
How do you integrate $ \int {x{e^{ - 4x}}} $ by integration by parts method?
Answer
515.1k+ views
Hint: In order to determine the answer of above definite integral use the formula of integration by parts i.e. $ \int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $ or \[\int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \] and assume $ f(x) = u = x $ and $ g'(x) = v = {e^{ - 4x}} $ calculate $ f'(x) $ and $ g(x) $ and put them into the formula and integrate.
Complete step by step solution:
We are given a function $ \int {x{e^{ - 4x}}} $ for which we have to find the integral using Integration by parts.
The formula for calculation of integration of parts is
$ \int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
\[\int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \]
In our question Let assume
$ f(x) = u = x $
And $ g'(x) = v = {e^{ - 4x}} $
Let’s find the values one by one:
$ u = x $
$
v = {e^{ - 4x}} \\
\int {v = \int {\left( {{e^{ - 4x}}} \right)} } = \dfrac{{\left( {{e^{ - 4x}}} \right)}}{{ - 4}} \;
$
\[\dfrac{{du}}{{dx}} = \dfrac{{dx}}{{dx}} = 1\]
Now put the values in the respective formula and we get:
\[
\Rightarrow \int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\int {{e^{ - 4x}}dx} } \right\} - \int {\left\{ {\dfrac{{dx}}{{dx}}\int {{e^{ - 4x}}dx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} - \int {\left\{ {1.\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \;
\]
We can again put the same value in the respective place and we get:
\[
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{ - 4}}\int {{e^{ - 4x}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} + \dfrac{1}{4}} \left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} + C \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - } \dfrac{1}{{16}}{e^{ - 4x}} + C \;
\]
Therefore, integration of $ \int {x{e^{ - 4x}}} $ by using integration by parts method is
\[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\]
So, the correct answer is “ \[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\] ”.
Note: 1. Different types of methods of Integration:
Integration by Substitution
Integration by parts
Integration of rational algebraic function by using partial fraction
2. Integration by Substitution: The method of evaluating the integral by reducing it to standard form by a proper substitution is called integration by substitution.
Complete step by step solution:
We are given a function $ \int {x{e^{ - 4x}}} $ for which we have to find the integral using Integration by parts.
The formula for calculation of integration of parts is
$ \int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
\[\int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \]
In our question Let assume
$ f(x) = u = x $
And $ g'(x) = v = {e^{ - 4x}} $
Let’s find the values one by one:
$ u = x $
$
v = {e^{ - 4x}} \\
\int {v = \int {\left( {{e^{ - 4x}}} \right)} } = \dfrac{{\left( {{e^{ - 4x}}} \right)}}{{ - 4}} \;
$
\[\dfrac{{du}}{{dx}} = \dfrac{{dx}}{{dx}} = 1\]
Now put the values in the respective formula and we get:
\[
\Rightarrow \int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\int {{e^{ - 4x}}dx} } \right\} - \int {\left\{ {\dfrac{{dx}}{{dx}}\int {{e^{ - 4x}}dx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} - \int {\left\{ {1.\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \;
\]
We can again put the same value in the respective place and we get:
\[
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{ - 4}}\int {{e^{ - 4x}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} + \dfrac{1}{4}} \left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} + C \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - } \dfrac{1}{{16}}{e^{ - 4x}} + C \;
\]
Therefore, integration of $ \int {x{e^{ - 4x}}} $ by using integration by parts method is
\[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\]
So, the correct answer is “ \[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\] ”.
Note: 1. Different types of methods of Integration:
Integration by Substitution
Integration by parts
Integration of rational algebraic function by using partial fraction
2. Integration by Substitution: The method of evaluating the integral by reducing it to standard form by a proper substitution is called integration by substitution.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

