
How do you integrate $ \int {x{e^{ - 4x}}} $ by integration by parts method?
Answer
529.2k+ views
Hint: In order to determine the answer of above definite integral use the formula of integration by parts i.e. $ \int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $ or \[\int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \] and assume $ f(x) = u = x $ and $ g'(x) = v = {e^{ - 4x}} $ calculate $ f'(x) $ and $ g(x) $ and put them into the formula and integrate.
Complete step by step solution:
We are given a function $ \int {x{e^{ - 4x}}} $ for which we have to find the integral using Integration by parts.
The formula for calculation of integration of parts is
$ \int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
\[\int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \]
In our question Let assume
$ f(x) = u = x $
And $ g'(x) = v = {e^{ - 4x}} $
Let’s find the values one by one:
$ u = x $
$
v = {e^{ - 4x}} \\
\int {v = \int {\left( {{e^{ - 4x}}} \right)} } = \dfrac{{\left( {{e^{ - 4x}}} \right)}}{{ - 4}} \;
$
\[\dfrac{{du}}{{dx}} = \dfrac{{dx}}{{dx}} = 1\]
Now put the values in the respective formula and we get:
\[
\Rightarrow \int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\int {{e^{ - 4x}}dx} } \right\} - \int {\left\{ {\dfrac{{dx}}{{dx}}\int {{e^{ - 4x}}dx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} - \int {\left\{ {1.\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \;
\]
We can again put the same value in the respective place and we get:
\[
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{ - 4}}\int {{e^{ - 4x}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} + \dfrac{1}{4}} \left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} + C \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - } \dfrac{1}{{16}}{e^{ - 4x}} + C \;
\]
Therefore, integration of $ \int {x{e^{ - 4x}}} $ by using integration by parts method is
\[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\]
So, the correct answer is “ \[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\] ”.
Note: 1. Different types of methods of Integration:
Integration by Substitution
Integration by parts
Integration of rational algebraic function by using partial fraction
2. Integration by Substitution: The method of evaluating the integral by reducing it to standard form by a proper substitution is called integration by substitution.
Complete step by step solution:
We are given a function $ \int {x{e^{ - 4x}}} $ for which we have to find the integral using Integration by parts.
The formula for calculation of integration of parts is
$ \int {f(x)g'(x)dx = f(x)g(x) - \int {f'(x)g(x)dx} } $
\[\int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \]
In our question Let assume
$ f(x) = u = x $
And $ g'(x) = v = {e^{ - 4x}} $
Let’s find the values one by one:
$ u = x $
$
v = {e^{ - 4x}} \\
\int {v = \int {\left( {{e^{ - 4x}}} \right)} } = \dfrac{{\left( {{e^{ - 4x}}} \right)}}{{ - 4}} \;
$
\[\dfrac{{du}}{{dx}} = \dfrac{{dx}}{{dx}} = 1\]
Now put the values in the respective formula and we get:
\[
\Rightarrow \int {uvdx = u\left\{ {\int {vdx} } \right\} - \int {\left\{ {\dfrac{{du}}{{dx}}\int {vdx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\int {{e^{ - 4x}}dx} } \right\} - \int {\left\{ {\dfrac{{dx}}{{dx}}\int {{e^{ - 4x}}dx} } \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = x\left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} - \int {\left\{ {1.\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \;
\]
We can again put the same value in the respective place and we get:
\[
\Rightarrow \int {x{e^{ - 4x}}dx = \dfrac{{x{e^{ - 4x}}}}{{ - 4}} - \int {\dfrac{{{e^{ - 4x}}}}{{ - 4}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{ - 4}}\int {{e^{ - 4x}}dx} } \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} + \dfrac{1}{4}} \left\{ {\dfrac{{{e^{ - 4x}}}}{{ - 4}}} \right\} + C \\
\Rightarrow \int {x{e^{ - 4x}}dx = - \dfrac{1}{4}x{e^{ - 4x}} - } \dfrac{1}{{16}}{e^{ - 4x}} + C \;
\]
Therefore, integration of $ \int {x{e^{ - 4x}}} $ by using integration by parts method is
\[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\]
So, the correct answer is “ \[ - \dfrac{1}{4}x{e^{ - 4x}} - \dfrac{1}{{16}}{e^{ - 4x}} + C\] ”.
Note: 1. Different types of methods of Integration:
Integration by Substitution
Integration by parts
Integration of rational algebraic function by using partial fraction
2. Integration by Substitution: The method of evaluating the integral by reducing it to standard form by a proper substitution is called integration by substitution.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

