
How do you integrate \[\int {{x^3}\sqrt {1 + {x^2}} } \] using integration by parts?
Answer
542.4k+ views
Hint: Here to integrate the given integral by using integral by parts defined as the \[\int {uv\,dx = u\,\int {v\,dx} - \int {u'\,\,\left( {\int {v\,dx} } \right)} } \,dx\] , where u is the function of u(x), v is the function of v(x) and \[u'\] is the derivative of the function u(x) , then simplify by using the standard integral and differentiation formulas.
Complete step-by-step answer:
Integration by parts is a method to find integrals of products, it is a special method of integration that is often useful when two functions are multiplied together, but is also helpful in other ways.
Integral parts can be defined as the integration of product of two function is equal to first function into integral of second function minus integral of derivative of first function into integral of second function i.e.,
\[\int {uv\,dx = u\,\int {v\,dx} - \int {u'\,\,\left( {\int {v\,dx} } \right)} } \,dx\]
Here u is the first function, it is the function of u(x),
v is the second function, it is the function of v(x)
\[u'\] is the derivative of the function u(x)
Now, consider the given integral
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx\]
Here \[u = {x^3}\] , \[v = \sqrt {1 + {x^2}} \] and \[u' = \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}{x^3} = 3{x^2}\]
Then , by the formula of integration by parts and it is indefinite integral then add constant term C known as integral constant.
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\int {\sqrt {1 + {x^2}} \,dx} - \int {\dfrac{d}{{dx}}{x^3}\left( {\int {\sqrt {1 + {x^2}} \,dx} } \right)dx} + c\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\int {{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2}}}\,dx} - \int {3{x^2}\left( {\int {{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2}}}dx} } \right)dx} + c\]
As we know the formula \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2} + 1}}}}{{\left( {\dfrac{1}{2} + 1} \right)}} - \int {3{x^2}\left( {\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2} + 1}}}}{{\left( {\dfrac{1}{2} + 1} \right)}}} \right)dx} + c\]
Therefore, \[\dfrac{1}{2} + 1 = \dfrac{{1 + 2}}{2} = \dfrac{3}{2}\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}}}{{\left( {\dfrac{3}{2}} \right)}} - \int {3{x^2}\left( {\,\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}}}{{\left( {\dfrac{3}{2}} \right)}}} \right)dx} + c\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{2}{3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \int {3{x^2}\dfrac{2}{3}{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}dx} + c\]
Simplifying and again, by applying the integration by parts to it.
\[
\Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{2}{3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \int {3{x^2}\dfrac{2}{3}{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}dx} + c \\
\Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \int {2{x^2}{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - 2{x^2}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} + \int {4x\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}}dx + c} \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - 2{x^2}.\dfrac{2}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \int {4x.\dfrac{2}{5}{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \int {\dfrac{{8x}}{5}{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}dx} + c \;
\]
Again we apply the integration by parts we have
\[
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{8x}}{5}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}}}{{\dfrac{7}{2}}} - \int {\dfrac{8}{5}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}}}{{\dfrac{7}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{8x}}{5}.\dfrac{2}{7}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \int {\dfrac{8}{5}.\dfrac{2}{7}{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \int {\dfrac{{16}}{{35}}{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}dx} + c \;
\]
Again we apply the integration by parts we have
\[
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \dfrac{{16}}{{35}}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{9}{2}}}}}{{\dfrac{9}{2}}} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \dfrac{{16}}{{35}}.\dfrac{2}{9}{\left( {1 + {x^2}} \right)^{\dfrac{9}{2}}} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \dfrac{{32}}{{315}}{\left( {1 + {x^2}} \right)^{\dfrac{9}{2}}} + c \;
\]
Hence we have evaluated the integral.
So, the correct answer is “Option C”.
Note: The function can be integrated by using different methods. In integration we have two types: definite integral and indefinite integral. The definite integral has limit points and in the indefinite integral doesn’t have limit points. This problem can also be solved by using binomial expansion.
Complete step-by-step answer:
Integration by parts is a method to find integrals of products, it is a special method of integration that is often useful when two functions are multiplied together, but is also helpful in other ways.
Integral parts can be defined as the integration of product of two function is equal to first function into integral of second function minus integral of derivative of first function into integral of second function i.e.,
\[\int {uv\,dx = u\,\int {v\,dx} - \int {u'\,\,\left( {\int {v\,dx} } \right)} } \,dx\]
Here u is the first function, it is the function of u(x),
v is the second function, it is the function of v(x)
\[u'\] is the derivative of the function u(x)
Now, consider the given integral
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx\]
Here \[u = {x^3}\] , \[v = \sqrt {1 + {x^2}} \] and \[u' = \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}{x^3} = 3{x^2}\]
Then , by the formula of integration by parts and it is indefinite integral then add constant term C known as integral constant.
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\int {\sqrt {1 + {x^2}} \,dx} - \int {\dfrac{d}{{dx}}{x^3}\left( {\int {\sqrt {1 + {x^2}} \,dx} } \right)dx} + c\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\int {{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2}}}\,dx} - \int {3{x^2}\left( {\int {{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2}}}dx} } \right)dx} + c\]
As we know the formula \[\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}\] and \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2} + 1}}}}{{\left( {\dfrac{1}{2} + 1} \right)}} - \int {3{x^2}\left( {\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{1}{2} + 1}}}}{{\left( {\dfrac{1}{2} + 1} \right)}}} \right)dx} + c\]
Therefore, \[\dfrac{1}{2} + 1 = \dfrac{{1 + 2}}{2} = \dfrac{3}{2}\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}}}{{\left( {\dfrac{3}{2}} \right)}} - \int {3{x^2}\left( {\,\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}}}{{\left( {\dfrac{3}{2}} \right)}}} \right)dx} + c\]
\[ \Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{2}{3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \int {3{x^2}\dfrac{2}{3}{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}dx} + c\]
Simplifying and again, by applying the integration by parts to it.
\[
\Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = {x^3}\dfrac{2}{3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \int {3{x^2}\dfrac{2}{3}{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}dx} + c \\
\Rightarrow \,\,\,\,\int {{x^3}\sqrt {1 + {x^2}} } \,\,dx = \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \int {2{x^2}{{\left( {1 + {x^2}} \right)}^{\dfrac{3}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - 2{x^2}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} + \int {4x\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}}dx + c} \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - 2{x^2}.\dfrac{2}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \int {4x.\dfrac{2}{5}{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \int {\dfrac{{8x}}{5}{{\left( {1 + {x^2}} \right)}^{\dfrac{5}{2}}}dx} + c \;
\]
Again we apply the integration by parts we have
\[
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{8x}}{5}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}}}{{\dfrac{7}{2}}} - \int {\dfrac{8}{5}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}}}{{\dfrac{7}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{8x}}{5}.\dfrac{2}{7}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \int {\dfrac{8}{5}.\dfrac{2}{7}{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}dx} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \int {\dfrac{{16}}{{35}}{{\left( {1 + {x^2}} \right)}^{\dfrac{7}{2}}}dx} + c \;
\]
Again we apply the integration by parts we have
\[
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \dfrac{{16}}{{35}}\dfrac{{{{\left( {1 + {x^2}} \right)}^{\dfrac{9}{2}}}}}{{\dfrac{9}{2}}} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \dfrac{{16}}{{35}}.\dfrac{2}{9}{\left( {1 + {x^2}} \right)^{\dfrac{9}{2}}} + c \\
\Rightarrow \int {{x^3}\sqrt {1 + {x^2}} dx = } \dfrac{2}{3}{x^3}{\left( {1 + {x^2}} \right)^{\dfrac{3}{2}}} - \dfrac{{4{x^2}}}{5}{\left( {1 + {x^2}} \right)^{\dfrac{5}{2}}} + \dfrac{{16x}}{{35}}{\left( {1 + {x^2}} \right)^{\dfrac{7}{2}}} - \dfrac{{32}}{{315}}{\left( {1 + {x^2}} \right)^{\dfrac{9}{2}}} + c \;
\]
Hence we have evaluated the integral.
So, the correct answer is “Option C”.
Note: The function can be integrated by using different methods. In integration we have two types: definite integral and indefinite integral. The definite integral has limit points and in the indefinite integral doesn’t have limit points. This problem can also be solved by using binomial expansion.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

