
How do you integrate $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx$ by trigonometric substitution?
Answer
461.4k+ views
Hint: Here we are asked to find the value of the given integral by trigonometric substitution. Trigonometric substitution is nothing but substituting the variable by any expression which will help us to make the process of finding the integral easy. Also, the integrals are classified into two types, definite integral and indefinite integral: a definite integral contains upper and lower limits whereas an indefinite integral does not contain upper and lower limits; here, we are given an indefinite integral.
Formula to be used:
$\dfrac{d}{{dx}}\sec x = \sec x\tan x$
$\sqrt {{{\sec }^2}x - 1} = \tan x$
$\tan t = \dfrac{{\sin t}}{{\cos t}}$
$\sec t = \dfrac{1}{{\cos t}}$
$\dfrac{d}{{dt}}\left( {\sin x} \right) = \cos x$
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
$\sin t = \sqrt {1 - {{\cos }^2}t} $
Complete answer:
Let us consider $\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}$
We shall substitute $x = a\sec t$
Now, we need to differentiate $x = a\sec t$with respect to $x$
Thus, we have $dx = a\sec t\tan tdt$ (Here we have applied the formula $\dfrac{d}{{dx}}\sec x = \sec x\tan x$)
Now, we shall substitute $x = a\sec t$in $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $
Thus, we have $\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}} = \dfrac{{\sqrt {{{\left( {a\sec t} \right)}^2} - {a^2}} }}{{{{\left( {a\sec t} \right)}^4}}}$
$ = \dfrac{{\sqrt {{a^2}{{\sec }^2}t - {a^2}} }}{{{a^4}{{\sec }^4}t}}$
$ = \dfrac{{a\sqrt {{{\sec }^2}t - 1} }}{{{a^4}{{\sec }^4}t}}$
$ = \dfrac{{a\tan t}}{{{a^4}{{\sec }^4}t}}$ (Here we have applied $\sqrt {{{\sec }^2}x - 1} = \tan x$)
$ = \dfrac{{\tan t}}{{{a^3}{{\sec }^4}t}}$
$ = \dfrac{{\dfrac{{\sin t}}{{\cos t}}}}{{{a^3}{{\left( {\dfrac{1}{{\cos }}} \right)}^4}}}$ (Here we have applied $\tan t = \dfrac{{\sin t}}{{\cos t}}$ and $\sec t = \dfrac{1}{{\cos t}}$ )
$ = \dfrac{1}{{{a^3}}}\dfrac{{\sin t}}{{\cos t}}{\cos ^4}t$
$ = \dfrac{1}{{{a^3}}}\sin t{\cos ^3}t$
Now, we shall substitute the above equation in $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx$
$\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx$$ = \int {\dfrac{{\sin t{{\cos }^3}t}}{{{a^3}}}a\sec t \cdot \tan tdt} $
(Here we have applied $dx = a\sec t\tan tdt$)
$ = \dfrac{1}{{{a^2}}}\int {\sin t{{\cos }^3}t\sec t \cdot \tan tdt} $
$ = \dfrac{1}{{{a^2}}}\int {\sin t{{\cos }^3}t\dfrac{1}{{\cos t}}\dfrac{{\sin t}}{{\cos t}}dt} $
(Here we have applied $\tan t = \dfrac{{\sin t}}{{\cos t}}$ and $\sec t = \dfrac{1}{{\cos t}}$ )
$ = \dfrac{1}{{{a^2}}}\int {{{\sin }^2}t} \cos tdt$ …………….$\left( 1 \right)$
Now, we shall assume $y = \sin t$ and we need to differentiate it with respect to $y$
Thus, $dy = \cos tdt$ (We have applied $\dfrac{d}{{dt}}\left( {\sin x} \right) = \cos x$)
We need to apply $y = \sin t$and $dy = \cos tdt$ in the equation $\left( 1 \right)$
Thus, we have $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{1}{{{a^2}}}\int {{y^2}} dy$ (We shall apply the formula $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $ to integrate )
$ = \dfrac{1}{{{a^2}}}\dfrac{{{y^{2 + 1}}}}{{2 + 1}}$
$ = \dfrac{1}{{{a^2}}}\dfrac{{{y^3}}}{3}$
Since we have assumed $y = \sin t$, we shall apply it in the above.
$\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{1}{{{a^2}}}\dfrac{{{{\left( {\sin t} \right)}^3}}}{3}$ ……………..$\left( 2 \right)$
Earlier, we substituted $x = a\sec t$and $dx = a\sec t\tan tdt$.
For our convenience, we need to change as follows.
$x = a\sec t$
$\sec t = \dfrac{x}{a}$
$ \Rightarrow \dfrac{1}{{\cos t}} = \dfrac{x}{a}$ (Here we have applied $\sec t = \dfrac{1}{{\cos t}}$ )
$ \Rightarrow \cos t = \dfrac{a}{x}$
We know that $\sin t = \sqrt {1 - {{\cos }^2}t} $
Thus, $\sin t = \sqrt {1 - {{\left( {\dfrac{a}{x}} \right)}^2}} $
$ \Rightarrow \sin t = \sqrt {1 - \dfrac{{{a^2}}}{{{x^2}}}} $
$ \Rightarrow \sin t = \sqrt {\dfrac{{{x^2} - {a^2}}}{{{x^2}}}} $ $$ $$
$ \Rightarrow \sin t = \dfrac{{\sqrt {{x^2} - {a^2}} }}{x}$
Now, we shall substitute $\sin t = \dfrac{{\sqrt {{x^2} - {a^2}} }}{x}$ in the equation $\left( 2 \right)$
Thus, we have $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{1}{{{a^2}}}\dfrac{{{{\left( {\dfrac{{\sqrt {{x^2} - {a^2}} }}{x}} \right)}^3}}}{3}$
$ = \dfrac{1}{{3{a^2}{x^3}}}{\left( {{x^2} - {a^2}} \right)^{\dfrac{3}{2}}} + C$ (Here $C$ is the constant of integration)
$ = \dfrac{{{{\left( {{x^2} - {a^2}} \right)}^{\dfrac{3}{2}}}}}{{3{a^2}{x^3}}} + C$
Therefore, $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{{{{\left( {{x^2} - {a^2}} \right)}^{\dfrac{3}{2}}}}}{{3{a^2}{x^3}}} + C$
Note:
The steps to be followed in trigonometric substitution are as follows.
a) We shall make sure that we cannot use a simpler method to solve the integral and we need to identify that the given is a trigonometric substitution problem.
b) Then we need to decide which substitution to use. We can use sine substitution, tangent substitution, or secant substitution. In this process, we can get the values of x and dx.
c) Then we need to substitute the obtained values into the integral. We shall simplify the integral using any method.
d) At last, we need to back-substitute the integrated value back in terms of x.
Formula to be used:
$\dfrac{d}{{dx}}\sec x = \sec x\tan x$
$\sqrt {{{\sec }^2}x - 1} = \tan x$
$\tan t = \dfrac{{\sin t}}{{\cos t}}$
$\sec t = \dfrac{1}{{\cos t}}$
$\dfrac{d}{{dt}}\left( {\sin x} \right) = \cos x$
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
$\sin t = \sqrt {1 - {{\cos }^2}t} $
Complete answer:
Let us consider $\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}$
We shall substitute $x = a\sec t$
Now, we need to differentiate $x = a\sec t$with respect to $x$
Thus, we have $dx = a\sec t\tan tdt$ (Here we have applied the formula $\dfrac{d}{{dx}}\sec x = \sec x\tan x$)
Now, we shall substitute $x = a\sec t$in $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $
Thus, we have $\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}} = \dfrac{{\sqrt {{{\left( {a\sec t} \right)}^2} - {a^2}} }}{{{{\left( {a\sec t} \right)}^4}}}$
$ = \dfrac{{\sqrt {{a^2}{{\sec }^2}t - {a^2}} }}{{{a^4}{{\sec }^4}t}}$
$ = \dfrac{{a\sqrt {{{\sec }^2}t - 1} }}{{{a^4}{{\sec }^4}t}}$
$ = \dfrac{{a\tan t}}{{{a^4}{{\sec }^4}t}}$ (Here we have applied $\sqrt {{{\sec }^2}x - 1} = \tan x$)
$ = \dfrac{{\tan t}}{{{a^3}{{\sec }^4}t}}$
$ = \dfrac{{\dfrac{{\sin t}}{{\cos t}}}}{{{a^3}{{\left( {\dfrac{1}{{\cos }}} \right)}^4}}}$ (Here we have applied $\tan t = \dfrac{{\sin t}}{{\cos t}}$ and $\sec t = \dfrac{1}{{\cos t}}$ )
$ = \dfrac{1}{{{a^3}}}\dfrac{{\sin t}}{{\cos t}}{\cos ^4}t$
$ = \dfrac{1}{{{a^3}}}\sin t{\cos ^3}t$
Now, we shall substitute the above equation in $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx$
$\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx$$ = \int {\dfrac{{\sin t{{\cos }^3}t}}{{{a^3}}}a\sec t \cdot \tan tdt} $
(Here we have applied $dx = a\sec t\tan tdt$)
$ = \dfrac{1}{{{a^2}}}\int {\sin t{{\cos }^3}t\sec t \cdot \tan tdt} $
$ = \dfrac{1}{{{a^2}}}\int {\sin t{{\cos }^3}t\dfrac{1}{{\cos t}}\dfrac{{\sin t}}{{\cos t}}dt} $
(Here we have applied $\tan t = \dfrac{{\sin t}}{{\cos t}}$ and $\sec t = \dfrac{1}{{\cos t}}$ )
$ = \dfrac{1}{{{a^2}}}\int {{{\sin }^2}t} \cos tdt$ …………….$\left( 1 \right)$
Now, we shall assume $y = \sin t$ and we need to differentiate it with respect to $y$
Thus, $dy = \cos tdt$ (We have applied $\dfrac{d}{{dt}}\left( {\sin x} \right) = \cos x$)
We need to apply $y = \sin t$and $dy = \cos tdt$ in the equation $\left( 1 \right)$
Thus, we have $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{1}{{{a^2}}}\int {{y^2}} dy$ (We shall apply the formula $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $ to integrate )
$ = \dfrac{1}{{{a^2}}}\dfrac{{{y^{2 + 1}}}}{{2 + 1}}$
$ = \dfrac{1}{{{a^2}}}\dfrac{{{y^3}}}{3}$
Since we have assumed $y = \sin t$, we shall apply it in the above.
$\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{1}{{{a^2}}}\dfrac{{{{\left( {\sin t} \right)}^3}}}{3}$ ……………..$\left( 2 \right)$
Earlier, we substituted $x = a\sec t$and $dx = a\sec t\tan tdt$.
For our convenience, we need to change as follows.
$x = a\sec t$
$\sec t = \dfrac{x}{a}$
$ \Rightarrow \dfrac{1}{{\cos t}} = \dfrac{x}{a}$ (Here we have applied $\sec t = \dfrac{1}{{\cos t}}$ )
$ \Rightarrow \cos t = \dfrac{a}{x}$
We know that $\sin t = \sqrt {1 - {{\cos }^2}t} $
Thus, $\sin t = \sqrt {1 - {{\left( {\dfrac{a}{x}} \right)}^2}} $
$ \Rightarrow \sin t = \sqrt {1 - \dfrac{{{a^2}}}{{{x^2}}}} $
$ \Rightarrow \sin t = \sqrt {\dfrac{{{x^2} - {a^2}}}{{{x^2}}}} $ $$ $$
$ \Rightarrow \sin t = \dfrac{{\sqrt {{x^2} - {a^2}} }}{x}$
Now, we shall substitute $\sin t = \dfrac{{\sqrt {{x^2} - {a^2}} }}{x}$ in the equation $\left( 2 \right)$
Thus, we have $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{1}{{{a^2}}}\dfrac{{{{\left( {\dfrac{{\sqrt {{x^2} - {a^2}} }}{x}} \right)}^3}}}{3}$
$ = \dfrac{1}{{3{a^2}{x^3}}}{\left( {{x^2} - {a^2}} \right)^{\dfrac{3}{2}}} + C$ (Here $C$ is the constant of integration)
$ = \dfrac{{{{\left( {{x^2} - {a^2}} \right)}^{\dfrac{3}{2}}}}}{{3{a^2}{x^3}}} + C$
Therefore, $\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} $$ = \dfrac{{{{\left( {{x^2} - {a^2}} \right)}^{\dfrac{3}{2}}}}}{{3{a^2}{x^3}}} + C$
Note:
The steps to be followed in trigonometric substitution are as follows.
a) We shall make sure that we cannot use a simpler method to solve the integral and we need to identify that the given is a trigonometric substitution problem.
b) Then we need to decide which substitution to use. We can use sine substitution, tangent substitution, or secant substitution. In this process, we can get the values of x and dx.
c) Then we need to substitute the obtained values into the integral. We shall simplify the integral using any method.
d) At last, we need to back-substitute the integrated value back in terms of x.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

