
How do you integrate $ \int {\dfrac{{5 - {e^x}}}{{{e^{2x}}}}} dx $ ?
Answer
547.5k+ views
Hint: n this question, we have to calculate integral of exponential function and algebraic function separately and then add both the final answers to get the required result.
Complete step by step solution:
In this question we are given with the function $ \dfrac{{5 - {e^x}}}{{{e^{2x}}}} $ which can further be simplified as
$ \dfrac{5}{{{e^{2x}}}} + \dfrac{{{e^x}}}{{{e^{2x}}}} $ $ = 5{e^{ - 2x}} + {e^{ - x}} $
Here, we can see that the function is of the form $ f + g $ where $ f $ and $ g $ are two different functions.
Hence, we can apply the sum rule of integration which is given as follows:
$ \int {f(x) \pm g(x)dx = \int {f(x)dx} \pm \int {g(x)dx} } $
On comparing $ 5{e^{ - 2x}} + {e^{ - x}} $ with the sum rule, we can see that $ f(x) = 5{e^{ - 2x}} $ and $ g(x) = {e^{ - x}} $
Thus, on substitution we get,
$ I = \int {5{e^{ - 2x}}dx + \int {{e^{ - x}}dx} } $ ......(1)
We will solve the integral $ \int {5{e^{ - 2x}}dx} $ separately by using the u-substitution method.
Let $ - 2x = u $ , then we get $ - \dfrac{1}{2}u = x $
Differentiate both sides of the equation $ - \dfrac{1}{2}u = x $ with respect to x, we get
$ - \dfrac{1}{2}du = dx $
Therefore, on substitution we have
$ \int {5{e^{ - 2x}}dx} = - \dfrac{5}{2}\int {{e^u}du} $
We know that $ \int {{e^x}dx = } {e^x} + c $ where c is a constant.
Using this, we get
Now, let us substitute $ - 2x = u $ . Then we get
$ \int {5{e^{ - 2x}}dx} = - \dfrac{5}{2}{e^{ - 2x}} + {c_1} $ ......(2)
Similarly let us integrate $ g(x) = {e^{ - x}} $
$ \Rightarrow \int {(g)dx = \int {{e^{ - x}}dx} } $
We know that $ \int {{e^x}dx = } {e^x} + c $ where c is a constant.
Using this property we have
$ \Rightarrow \int {g(x)dx = \dfrac{{{e^{ - x}}}}{{ - 1}} = - } {e^{ - x}} + {c_2} $ ......(3)
On adding (2) and (3) we have
$ \int {f(x)dx + \int {g(x)dx = - \dfrac{5}{2}{e^{ - 2x}} - {e^{ - x}}} } + {c_1} + {c_2} $
$ \Rightarrow I = - \dfrac{5}{{2{e^{2x}}}} - \dfrac{1}{{{e^x}}} + c $
Where $ c = {c_1} + {c_2} $ and is the constant of integration.
On further simplifying we get
$ I = - \left[ {\dfrac{{5 + 2{e^x}}}{{2{e^{2x}}}}} \right] + c $
Hence, this is our required answer.
So, the correct answer is “ $ I = -\left[ {\dfrac{{5 + 2{e^x}}}{{2{e^{2x}}}}} \right] + c $ ”.
Note: This is a common tendency among students to substitute $ du $ or $ dx $ while using the u-substitution method. However, this will lead you to a wrong answer. The operation of integration, up to an additive constant, is the inverse of the operation of differentiation.
Complete step by step solution:
In this question we are given with the function $ \dfrac{{5 - {e^x}}}{{{e^{2x}}}} $ which can further be simplified as
$ \dfrac{5}{{{e^{2x}}}} + \dfrac{{{e^x}}}{{{e^{2x}}}} $ $ = 5{e^{ - 2x}} + {e^{ - x}} $
Here, we can see that the function is of the form $ f + g $ where $ f $ and $ g $ are two different functions.
Hence, we can apply the sum rule of integration which is given as follows:
$ \int {f(x) \pm g(x)dx = \int {f(x)dx} \pm \int {g(x)dx} } $
On comparing $ 5{e^{ - 2x}} + {e^{ - x}} $ with the sum rule, we can see that $ f(x) = 5{e^{ - 2x}} $ and $ g(x) = {e^{ - x}} $
Thus, on substitution we get,
$ I = \int {5{e^{ - 2x}}dx + \int {{e^{ - x}}dx} } $ ......(1)
We will solve the integral $ \int {5{e^{ - 2x}}dx} $ separately by using the u-substitution method.
Let $ - 2x = u $ , then we get $ - \dfrac{1}{2}u = x $
Differentiate both sides of the equation $ - \dfrac{1}{2}u = x $ with respect to x, we get
$ - \dfrac{1}{2}du = dx $
Therefore, on substitution we have
$ \int {5{e^{ - 2x}}dx} = - \dfrac{5}{2}\int {{e^u}du} $
We know that $ \int {{e^x}dx = } {e^x} + c $ where c is a constant.
Using this, we get
Now, let us substitute $ - 2x = u $ . Then we get
$ \int {5{e^{ - 2x}}dx} = - \dfrac{5}{2}{e^{ - 2x}} + {c_1} $ ......(2)
Similarly let us integrate $ g(x) = {e^{ - x}} $
$ \Rightarrow \int {(g)dx = \int {{e^{ - x}}dx} } $
We know that $ \int {{e^x}dx = } {e^x} + c $ where c is a constant.
Using this property we have
$ \Rightarrow \int {g(x)dx = \dfrac{{{e^{ - x}}}}{{ - 1}} = - } {e^{ - x}} + {c_2} $ ......(3)
On adding (2) and (3) we have
$ \int {f(x)dx + \int {g(x)dx = - \dfrac{5}{2}{e^{ - 2x}} - {e^{ - x}}} } + {c_1} + {c_2} $
$ \Rightarrow I = - \dfrac{5}{{2{e^{2x}}}} - \dfrac{1}{{{e^x}}} + c $
Where $ c = {c_1} + {c_2} $ and is the constant of integration.
On further simplifying we get
$ I = - \left[ {\dfrac{{5 + 2{e^x}}}{{2{e^{2x}}}}} \right] + c $
Hence, this is our required answer.
So, the correct answer is “ $ I = -\left[ {\dfrac{{5 + 2{e^x}}}{{2{e^{2x}}}}} \right] + c $ ”.
Note: This is a common tendency among students to substitute $ du $ or $ dx $ while using the u-substitution method. However, this will lead you to a wrong answer. The operation of integration, up to an additive constant, is the inverse of the operation of differentiation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

