
How do you integrate \[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\] using trigonometric substitution?
Answer
508.2k+ views
Hint: Here we are asked to integrate the given function using the trigonometric substitution. When we have complicated terms in the function during the integration, we used to make it simply by substituting a temporary variable to those terms but here instead of a temporary variable we have to use a suitable trigonometric function. Then by integrating that function will give us the result.
Formula: Some of the formulas that we need to know before solving the problem:
\[d\left( {\cosh (x)} \right) = \sinh (x)\]
\[\int {cf(x)dx} = c\int {f(x)dx} \] where \[c\]is constant.
\[\int {\cosh (x)dv} = \sinh (x)\]
\[{\sinh ^2}(x) = \dfrac{{\cosh (2x)}}{2} - \dfrac{1}{2}\]
\[\sinh (2{\cosh ^{ - 1}}(x)) = 2x\sqrt {x - 1} \sqrt {x + 1} \]
Complete step-by-step solution:
It is given that \[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]. Let us rewrite the numerator for our convenience as \[2 - {x^2} = - ({x^2} - 4) - 2\]
Let us substitute it in the given function.
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = \int {\dfrac{{ - ({x^2} - 4) - 2}}{{\sqrt {{x^2} - 4} }}} dx\]
\[ = \int { - \sqrt {{x^2} - 4} } - \dfrac{2}{{\sqrt {{x^2} - 4} }}dx\]
Let us now split the integral.
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]=\[ \left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } \int {4{{\sinh }^2}(u)du} } \right)\]
We are asked to solve this problem by using trigonometric identities. So, let us substitute \[x = 2\cosh (u)\].
Therefore, \[dx = 2\sinh (u)du\](using the formula \[\cosh (u)' = \sinh (u)du\]).
It also implies that \[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\].
Now let us substitute \[x = 2\cosh (u)\] in \[\sqrt {{x^2} - 4} \]
\[\sqrt {{x^2} - 4} = \sqrt {4{{\cosh }^2}(u) - 4} \]
\[ = 2\sqrt {{{\cosh }^2}(u) - 1} \]
Using the formula, \[{\cosh ^2}(x) - 1 = {\sinh ^2}(x)\] we get
\[ = 2\sqrt {{{\sinh }^2}(u)} \]
\[\sqrt {{x^2} - 4} = 2\sinh (u)\]
Let us substitute it in the equation\[(1)\].
\[\left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } \int {\sqrt {{x^2} - 4} dx} } \right)\]\[ = \left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } \int {4{{\sinh }^2}(u)du} } \right)\]
Using the formula, \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = \left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } 4\int {{{\sinh }^2}(u)du} } \right)\]
Using the formula, \[{\sinh ^2}(x) = \dfrac{{\cosh (2x)}}{2} - \dfrac{1}{2}\] we get
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 4\int {\left( {\dfrac{{\cos (2u)}}{2} - \dfrac{1}{2}} \right)} du\]
Again, using the formula \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 4\left( {\dfrac{{\int {(\cosh (2u) - 1)du} }}{2}} \right)\]
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\int {(\cosh (2u) - 1)du} \]
Let’s split the integral.
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\left( { - \int {1du} + \int {\cosh (2u)du} } \right)\]
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\int {\cosh (2u)du} + 2\int {1du} \]
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\int {\cosh (2u)du} + 2u\]
Let us substitute\[v = 2u\], then we get \[dv = 2du\]\[ \Rightarrow du = \dfrac{{dv}}{2}\]
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - 2} \int {\dfrac{{\cosh (v)}}{2}dv} \]
Applying the formula, \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \int {\cosh (v)dv} \]
Using the formula, \[\int {\cosh (x)dv} = \sinh (x)\] we get
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \sinh (v)\]
Now let us re-substitute \[v = 2u\] we get
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \sinh (2u)\]
Let’s re-substitute \[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Applying the formula, \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\int {\dfrac{1}{{\sqrt {{x^2} - 4} }}} dx............(2)\]
Here let us substitute\[x = 2\cosh (u)\]. Therefore, \[dx = 2\sinh (u)du\] (using the formula \[\cosh (u)' = \sinh (u)du\]).
It also implies that\[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\]. And also using the formula, \[{\cosh ^2}(x) - 1 = {\sinh ^2}(x)\] we get
\[
\dfrac{1}{{\sqrt {{x^2} - 4} }} = \dfrac{1}{{\sqrt {4{{\cosh }^2}(u) - 4} }} \\
{\text{ }} = \dfrac{1}{{2\sqrt {{{\cosh }^2}(u) - 1} }} \\
{\text{ }} = \dfrac{1}{{2\sqrt {{{\sinh }^2}(u)} }} \\
{\text{ }} = \dfrac{1}{{2\sinh (u)}} \\
\]
Substituting this in the equation \[(2)\] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\int {\dfrac{1}{{2\sinh (u)}}(2\sinh (u))du} \]
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\left( {{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
On integrating the above expression, we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2u\]
Now let us re-substitute \[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\left( {{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Therefore, \[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now using the formula, \[\sinh (2{\cosh ^{ - 1}}(x)) = 2x\sqrt {x - 1} \sqrt {x + 1} \] we get
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - x\sqrt {\dfrac{x}{2} - 1} \sqrt {\dfrac{x}{2} + 1} \]
Let us simplify it further.
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - \dfrac{{x\sqrt {x - 2} \sqrt {x + 2} }}{2}\]
Thus, the integration of the given function is \[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - \dfrac{{x\sqrt {x - 2} \sqrt {x + 2} }}{2} + C\].
Note: In both differentiation and integration, whenever we use a temporary variable while doing the substitution method, we have to re-substitute it again to get the answer in the original variable. Here we have used temporary variables\[u\& v\] . After the calculation, we have re-substituted their values back to the original variable.
Formula: Some of the formulas that we need to know before solving the problem:
\[d\left( {\cosh (x)} \right) = \sinh (x)\]
\[\int {cf(x)dx} = c\int {f(x)dx} \] where \[c\]is constant.
\[\int {\cosh (x)dv} = \sinh (x)\]
\[{\sinh ^2}(x) = \dfrac{{\cosh (2x)}}{2} - \dfrac{1}{2}\]
\[\sinh (2{\cosh ^{ - 1}}(x)) = 2x\sqrt {x - 1} \sqrt {x + 1} \]
Complete step-by-step solution:
It is given that \[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]. Let us rewrite the numerator for our convenience as \[2 - {x^2} = - ({x^2} - 4) - 2\]
Let us substitute it in the given function.
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = \int {\dfrac{{ - ({x^2} - 4) - 2}}{{\sqrt {{x^2} - 4} }}} dx\]
\[ = \int { - \sqrt {{x^2} - 4} } - \dfrac{2}{{\sqrt {{x^2} - 4} }}dx\]
Let us now split the integral.
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]=\[ \left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } \int {4{{\sinh }^2}(u)du} } \right)\]
We are asked to solve this problem by using trigonometric identities. So, let us substitute \[x = 2\cosh (u)\].
Therefore, \[dx = 2\sinh (u)du\](using the formula \[\cosh (u)' = \sinh (u)du\]).
It also implies that \[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\].
Now let us substitute \[x = 2\cosh (u)\] in \[\sqrt {{x^2} - 4} \]
\[\sqrt {{x^2} - 4} = \sqrt {4{{\cosh }^2}(u) - 4} \]
\[ = 2\sqrt {{{\cosh }^2}(u) - 1} \]
Using the formula, \[{\cosh ^2}(x) - 1 = {\sinh ^2}(x)\] we get
\[ = 2\sqrt {{{\sinh }^2}(u)} \]
\[\sqrt {{x^2} - 4} = 2\sinh (u)\]
Let us substitute it in the equation\[(1)\].
\[\left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } \int {\sqrt {{x^2} - 4} dx} } \right)\]\[ = \left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } \int {4{{\sinh }^2}(u)du} } \right)\]
Using the formula, \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = \left(- {\int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - } 4\int {{{\sinh }^2}(u)du} } \right)\]
Using the formula, \[{\sinh ^2}(x) = \dfrac{{\cosh (2x)}}{2} - \dfrac{1}{2}\] we get
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 4\int {\left( {\dfrac{{\cos (2u)}}{2} - \dfrac{1}{2}} \right)} du\]
Again, using the formula \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 4\left( {\dfrac{{\int {(\cosh (2u) - 1)du} }}{2}} \right)\]
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\int {(\cosh (2u) - 1)du} \]
Let’s split the integral.
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\left( { - \int {1du} + \int {\cosh (2u)du} } \right)\]
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\int {\cosh (2u)du} + 2\int {1du} \]
\[ = - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - 2\int {\cosh (2u)du} + 2u\]
Let us substitute\[v = 2u\], then we get \[dv = 2du\]\[ \Rightarrow du = \dfrac{{dv}}{2}\]
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}dx - 2} \int {\dfrac{{\cosh (v)}}{2}dv} \]
Applying the formula, \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \int {\cosh (v)dv} \]
Using the formula, \[\int {\cosh (x)dv} = \sinh (x)\] we get
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \sinh (v)\]
Now let us re-substitute \[v = 2u\] we get
\[ = 2u - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \sinh (2u)\]
Let’s re-substitute \[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \int {\dfrac{2}{{\sqrt {{x^2} - 4} }}} dx - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Applying the formula, \[\int {cf(x)dx} = c\int {f(x)dx} \] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\int {\dfrac{1}{{\sqrt {{x^2} - 4} }}} dx............(2)\]
Here let us substitute\[x = 2\cosh (u)\]. Therefore, \[dx = 2\sinh (u)du\] (using the formula \[\cosh (u)' = \sinh (u)du\]).
It also implies that\[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\]. And also using the formula, \[{\cosh ^2}(x) - 1 = {\sinh ^2}(x)\] we get
\[
\dfrac{1}{{\sqrt {{x^2} - 4} }} = \dfrac{1}{{\sqrt {4{{\cosh }^2}(u) - 4} }} \\
{\text{ }} = \dfrac{1}{{2\sqrt {{{\cosh }^2}(u) - 1} }} \\
{\text{ }} = \dfrac{1}{{2\sqrt {{{\sinh }^2}(u)} }} \\
{\text{ }} = \dfrac{1}{{2\sinh (u)}} \\
\]
Substituting this in the equation \[(2)\] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\int {\dfrac{1}{{2\sinh (u)}}(2\sinh (u))du} \]
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\left( {{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
On integrating the above expression, we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2u\]
Now let us re-substitute \[u = {\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right)\] we get
\[ = 2{\cosh ^{ - 1}}\left( {\dfrac{x}{2}} \right) - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) - 2\left( {{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Therefore, \[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - \sinh \left( {2{{\cosh }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)\]
Now using the formula, \[\sinh (2{\cosh ^{ - 1}}(x)) = 2x\sqrt {x - 1} \sqrt {x + 1} \] we get
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - x\sqrt {\dfrac{x}{2} - 1} \sqrt {\dfrac{x}{2} + 1} \]
Let us simplify it further.
\[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - \dfrac{{x\sqrt {x - 2} \sqrt {x + 2} }}{2}\]
Thus, the integration of the given function is \[\int {\dfrac{{2 - {x^2}}}{{\sqrt {{x^2} - 4} }}} dx\]\[ = - \dfrac{{x\sqrt {x - 2} \sqrt {x + 2} }}{2} + C\].
Note: In both differentiation and integration, whenever we use a temporary variable while doing the substitution method, we have to re-substitute it again to get the answer in the original variable. Here we have used temporary variables\[u\& v\] . After the calculation, we have re-substituted their values back to the original variable.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

