
Integrate \[\int {\dfrac{1}{{1 + \tan x}}} dx\]
Answer
566.4k+ views
Hint: The simple meaning of trigonometry is calculations of triangles.
As we know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
By using this identity we will solve this problem. By substituting this value in the given equation, we can calculate the integration as we get terms of the integral in terms of sin and cos.
Complete step-by-step answer:
\[\int {\dfrac{1}{{1 + \tan x}}} dx\] = \[\int {\dfrac{1}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} \] \[dx\]
B taking LCM
= \[\int {\dfrac{1}{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}} \] \[dx\]
= \[\int {\dfrac{{\cos x}}{{\sin x + cox}}} \] \[dx\]
Multiply and divide by 2
= \[\dfrac{1}{2}\int {\dfrac{{2\cos x}}{{\sin x + \cos x}}} \] \[dx\]
= \[\dfrac{1}{2}\int {\left( {\dfrac{{2\cos x}}{{\sin x + \cos x}} - 1 + 1} \right)} \] \[dx\]
\[\dfrac{1}{2}\int {\dfrac{{2\cos x}}{{\sin x + \cos x}}} - 1 + 1\] \[dx\]
= \[\dfrac{1}{2}\int {\left( {\dfrac{{\cos x + \cos x}}{{\sin x + \cos x}} - \dfrac{{\sin x + \cos x}}{{\sin + \cos x}} + 1} \right)} dx\]
= \[\dfrac{1}{2}\int {\dfrac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx + \dfrac{1}{2}\int {dx} \]
Put , \[\sin x + \cos x = u\]
Now, differentiate this above equation, we get-
\[du = \cos x - \sin x\]
By substituting, we will get equation like-
= \[\dfrac{1}{2}\int {udu + \dfrac{1}{2}} x\]
= \[\dfrac{1}{2}\log u + \dfrac{1}{2}x\]
By Substituting the value of u, we get-
= \[\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c\]
\[\int {\dfrac{1}{{1 + \tan x}}} dx\] = \[\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c\]
So, the correct answer is “ \[\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c\] ”.
Note: We have many formulas related to tangent like-
\[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\]
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}\]
We must be use the identities depending upon the nature of the questions and required answer asked.
As we know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
By using this identity we will solve this problem. By substituting this value in the given equation, we can calculate the integration as we get terms of the integral in terms of sin and cos.
Complete step-by-step answer:
\[\int {\dfrac{1}{{1 + \tan x}}} dx\] = \[\int {\dfrac{1}{{1 + \dfrac{{\sin x}}{{\cos x}}}}} \] \[dx\]
B taking LCM
= \[\int {\dfrac{1}{{\dfrac{{\sin x + \cos x}}{{\cos x}}}}} \] \[dx\]
= \[\int {\dfrac{{\cos x}}{{\sin x + cox}}} \] \[dx\]
Multiply and divide by 2
= \[\dfrac{1}{2}\int {\dfrac{{2\cos x}}{{\sin x + \cos x}}} \] \[dx\]
= \[\dfrac{1}{2}\int {\left( {\dfrac{{2\cos x}}{{\sin x + \cos x}} - 1 + 1} \right)} \] \[dx\]
\[\dfrac{1}{2}\int {\dfrac{{2\cos x}}{{\sin x + \cos x}}} - 1 + 1\] \[dx\]
= \[\dfrac{1}{2}\int {\left( {\dfrac{{\cos x + \cos x}}{{\sin x + \cos x}} - \dfrac{{\sin x + \cos x}}{{\sin + \cos x}} + 1} \right)} dx\]
= \[\dfrac{1}{2}\int {\dfrac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx + \dfrac{1}{2}\int {dx} \]
Put , \[\sin x + \cos x = u\]
Now, differentiate this above equation, we get-
\[du = \cos x - \sin x\]
By substituting, we will get equation like-
= \[\dfrac{1}{2}\int {udu + \dfrac{1}{2}} x\]
= \[\dfrac{1}{2}\log u + \dfrac{1}{2}x\]
By Substituting the value of u, we get-
= \[\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c\]
\[\int {\dfrac{1}{{1 + \tan x}}} dx\] = \[\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c\]
So, the correct answer is “ \[\dfrac{1}{2}\log \left( {\sin x + \cos x} \right) + \dfrac{1}{2}x + c\] ”.
Note: We have many formulas related to tangent like-
\[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\]
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}\]
We must be use the identities depending upon the nature of the questions and required answer asked.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

