
How do you integrate $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}$ using partial fractions?
Answer
538.8k+ views
Hint: We first try to describe the requirement and the process of finding the partial fractions. Then we factorise the denominator of $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}$. We form the numerator of $\dfrac{5x-1}{{{x}^{2}}-x-2}$ with the factors. We simplify the equation $\dfrac{5x-1}{{{x}^{2}}-x-2}=\dfrac{A}{x-2}+\dfrac{B}{x+1}$ to find the partial fraction form.
Complete step by step solution:
For our given problem $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}$, we first break ${{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1$ into factors.
We have ${{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1={{x}^{2}}\left( {{x}^{2}}+x-2 \right)+3{{x}^{2}}+1={{x}^{2}}\left( {{x}^{2}}+x-2 \right)+3\left( {{x}^{2}}+x-2 \right)-3x+7$.
$\begin{align}
& \dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2} \\
& =\dfrac{{{x}^{2}}\left( {{x}^{2}}+x-2 \right)+3\left( {{x}^{2}}+x-2 \right)-3x+7}{{{x}^{2}}+x-2} \\
& ={{x}^{2}}+3-\dfrac{3x-7}{{{x}^{2}}+x-2} \\
\end{align}$
Now we apply partial fractions for $\dfrac{3x-7}{{{x}^{2}}+x-2}$
Using middle-term factorisation we get
$\begin{align}
& {{x}^{2}}+x-2 \\
& ={{x}^{2}}+2x-x-2 \\
& =x\left( x+2 \right)-\left( x+2 \right) \\
& =\left( x+2 \right)\left( x-1 \right) \\
\end{align}$
Now we have to arrange the numerator $3x-7$ in the binary addition and subtraction of the same factors of ${{x}^{2}}+x-2$ which are $\left( x+2 \right),\left( x-1 \right)$.
We can do that directly or apply the form where $\dfrac{3x-7}{{{x}^{2}}+x-2}=\dfrac{A}{x+2}+\dfrac{B}{x-1}$.
We simplify the $\dfrac{A}{x+2}+\dfrac{B}{x-1}$. We get $\dfrac{A}{x+2}+\dfrac{B}{x-1}=\dfrac{A\left( x-1 \right)+B\left( x+2 \right)}{\left( x+2 \right)\left( x-1 \right)}$.
So, $\dfrac{3x-7}{{{x}^{2}}+x-2}=\dfrac{A}{x+2}+\dfrac{B}{x-1}=\dfrac{A\left( x-1 \right)+B\left( x+2 \right)}{\left( x+2 \right)\left( x-1 \right)}$ gives $3x-7=A\left( x-1 \right)+B\left( x+2 \right)$.
Simplifying we get $3x-7=A\left( x-1 \right)+B\left( x+2 \right)=x\left( A+B \right)+\left( 2B-A \right)$.
Equating the variables and constants we get $\left( A+B \right)=3;\left( 2B-A \right)=-7$.
Adding the equations, we get
$\begin{align}
& \left( A+B \right)+\left( 2B-A \right)=3-7 \\
& \Rightarrow 3B=-4 \\
& \Rightarrow B=\dfrac{-4}{3} \\
\end{align}$
This gives $A=3-B=3-\dfrac{-4}{3}=\dfrac{13}{3}$.
The partial fraction form becomes \[\dfrac{3x-7}{{{x}^{2}}+x-2}=\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{-4}/{}_{3}}{x-1}\].
The final form is $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}={{x}^{2}}+3-\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{4}/{}_{3}}{x-1}$
Now we integrate $\int{\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}dx}=\int{\left( {{x}^{2}}+3-\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{4}/{}_{3}}{x-1} \right)dx}$.
\[\begin{align}
& \int{\left( {{x}^{2}}+3-\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{4}/{}_{3}}{x-1} \right)dx} \\
& =\dfrac{{{x}^{3}}}{3}+3x-\dfrac{13}{3}\log \left| x+2 \right|+\dfrac{4}{3}\log \left| x-1 \right|+c \\
\end{align}\]
The integral form of $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}$ using partial fractions is \[\dfrac{{{x}^{3}}}{3}+3x-\dfrac{13}{3}\log \left| x+2 \right|+\dfrac{4}{3}\log \left| x-1 \right|+c\].
Note: The form gets trickier when there are the same factors within its power form. We can simplify the form by taking the form of $Ax+B$ instead of A in case of quadratics. These partial fraction forms are required for special forms of integration.
Complete step by step solution:
For our given problem $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}$, we first break ${{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1$ into factors.
We have ${{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1={{x}^{2}}\left( {{x}^{2}}+x-2 \right)+3{{x}^{2}}+1={{x}^{2}}\left( {{x}^{2}}+x-2 \right)+3\left( {{x}^{2}}+x-2 \right)-3x+7$.
$\begin{align}
& \dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2} \\
& =\dfrac{{{x}^{2}}\left( {{x}^{2}}+x-2 \right)+3\left( {{x}^{2}}+x-2 \right)-3x+7}{{{x}^{2}}+x-2} \\
& ={{x}^{2}}+3-\dfrac{3x-7}{{{x}^{2}}+x-2} \\
\end{align}$
Now we apply partial fractions for $\dfrac{3x-7}{{{x}^{2}}+x-2}$
Using middle-term factorisation we get
$\begin{align}
& {{x}^{2}}+x-2 \\
& ={{x}^{2}}+2x-x-2 \\
& =x\left( x+2 \right)-\left( x+2 \right) \\
& =\left( x+2 \right)\left( x-1 \right) \\
\end{align}$
Now we have to arrange the numerator $3x-7$ in the binary addition and subtraction of the same factors of ${{x}^{2}}+x-2$ which are $\left( x+2 \right),\left( x-1 \right)$.
We can do that directly or apply the form where $\dfrac{3x-7}{{{x}^{2}}+x-2}=\dfrac{A}{x+2}+\dfrac{B}{x-1}$.
We simplify the $\dfrac{A}{x+2}+\dfrac{B}{x-1}$. We get $\dfrac{A}{x+2}+\dfrac{B}{x-1}=\dfrac{A\left( x-1 \right)+B\left( x+2 \right)}{\left( x+2 \right)\left( x-1 \right)}$.
So, $\dfrac{3x-7}{{{x}^{2}}+x-2}=\dfrac{A}{x+2}+\dfrac{B}{x-1}=\dfrac{A\left( x-1 \right)+B\left( x+2 \right)}{\left( x+2 \right)\left( x-1 \right)}$ gives $3x-7=A\left( x-1 \right)+B\left( x+2 \right)$.
Simplifying we get $3x-7=A\left( x-1 \right)+B\left( x+2 \right)=x\left( A+B \right)+\left( 2B-A \right)$.
Equating the variables and constants we get $\left( A+B \right)=3;\left( 2B-A \right)=-7$.
Adding the equations, we get
$\begin{align}
& \left( A+B \right)+\left( 2B-A \right)=3-7 \\
& \Rightarrow 3B=-4 \\
& \Rightarrow B=\dfrac{-4}{3} \\
\end{align}$
This gives $A=3-B=3-\dfrac{-4}{3}=\dfrac{13}{3}$.
The partial fraction form becomes \[\dfrac{3x-7}{{{x}^{2}}+x-2}=\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{-4}/{}_{3}}{x-1}\].
The final form is $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}={{x}^{2}}+3-\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{4}/{}_{3}}{x-1}$
Now we integrate $\int{\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}dx}=\int{\left( {{x}^{2}}+3-\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{4}/{}_{3}}{x-1} \right)dx}$.
\[\begin{align}
& \int{\left( {{x}^{2}}+3-\dfrac{{}^{13}/{}_{3}}{x+2}+\dfrac{{}^{4}/{}_{3}}{x-1} \right)dx} \\
& =\dfrac{{{x}^{3}}}{3}+3x-\dfrac{13}{3}\log \left| x+2 \right|+\dfrac{4}{3}\log \left| x-1 \right|+c \\
\end{align}\]
The integral form of $\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}$ using partial fractions is \[\dfrac{{{x}^{3}}}{3}+3x-\dfrac{13}{3}\log \left| x+2 \right|+\dfrac{4}{3}\log \left| x-1 \right|+c\].
Note: The form gets trickier when there are the same factors within its power form. We can simplify the form by taking the form of $Ax+B$ instead of A in case of quadratics. These partial fraction forms are required for special forms of integration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

