
How to Integrate \[\dfrac{7}{2}\] & \[\dfrac{1}{2}\] of \[\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx\]?
Answer
546k+ views
Hint: This question is from the topic of integration. In solving this question, we will use a substitution method to solve this question. First, we make the term \[\left( 5+4x-{{x}^{2}} \right)\] simple. After that, we will take \[\left( x-2 \right)\] as \[3\sin t\] and differentiate them. After that, we use them for further integration. After solving the further integration, we will get our answer.
Complete step-by-step solution:
Let us solve this question.
We can write \[5+4x-{{x}^{2}}\] as
\[5+4x-{{x}^{2}}=9-\left( 4-4x+{{x}^{2}} \right)\]
Using the formula \[{{\left( a-b \right)}^{2}}={{\left( b-a \right)}^{2}}={{a}^{2}}-2\times a\times b+{{b}^{2}}\], we can write the above as
\[\Rightarrow 5+4x-{{x}^{2}}=9-{{\left( x-2 \right)}^{2}}\]
The above can also be written as
\[\Rightarrow 5+4x-{{x}^{2}}={{3}^{2}}-{{\left( x-2 \right)}^{2}}\]
Now, we will do the substitution.
Let us take \[\left( x-2 \right)\] as \[3\sin t\]
So, we can write
\[\left( x-2 \right)=3\sin t\]
Now, differentiating both sides of the above equation, we get
\[dx=3\cos tdt\]
Now, we know that we have to integrate the term \[\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx\] having limits as \[\dfrac{7}{2}\] and \[\dfrac{1}{2}\]. So, let us write
\[I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}\]
The above can also be written as
\[\Rightarrow I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( x-2 \right)}^{2}} \right)}^{\dfrac{3}{2}}}}dx}\]
Now, putting the values of \[\left( x-2 \right)\] as \[3\sin t\] and \[dx\] as \[3\cos tdt\] that we have found above, we can write
\[\Rightarrow I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
We are changing the variable, so limits will also change according to them. We can write
At \[x=\dfrac{7}{2}\],
\[\left( \dfrac{7}{2}-2 \right)=3\sin t\]
\[\Rightarrow \left( \dfrac{1}{2} \right)=\sin t\]
\[\Rightarrow t=\dfrac{\pi }{6}\]
So, at \[x=\dfrac{7}{2}\], \[t=\dfrac{\pi }{6}\]
And at \[x=\dfrac{1}{2}\],
\[\left( \dfrac{1}{2}-2 \right)=3\sin t\]
\[\Rightarrow \left( -\dfrac{3}{2} \right)=3\sin t\]
\[\Rightarrow \left( -\dfrac{1}{2} \right)=\sin t\]
\[\Rightarrow t=-\dfrac{\pi }{6}\]
So, at \[x=\dfrac{1}{2}\], \[t=-\dfrac{\pi }{6}\]
Now, we can write \[I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}\] as
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\left( {{3}^{2}}-{{3}^{2}}{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2\times \dfrac{3}{2}}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{3}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
The above can also be written as
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}\cos tdt}\]
Using the formula \[\left( 1-{{\sin }^{2}}t \right)={{\cos }^{2}}t\], we can write
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\left( {{\cos }^{2}}t \right)}^{\dfrac{3}{2}}}}\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{2\times \dfrac{3}{2}}}t}\cos tdt}\]
\[\Rightarrow I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{3}}t}\cos tdt}\]
The above can also be written as
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{2}}t}dt}\]
\[\Rightarrow I=\dfrac{1}{{{3}^{2}}}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\cos }^{2}}t}dt}\]
\[\Rightarrow I=\dfrac{1}{9}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\cos }^{2}}t}dt}\]
\[\sec x=\dfrac{1}{\cos x}\]
Using the formula \[\sec x=\dfrac{1}{\cos x}\], we can the above as
\[\Rightarrow I=\dfrac{1}{9}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{{{\sec }^{2}}tdt}\]
Using the formula \[\int{{{\sec }^{2}}xdx}=\tan x\], we can write the above as
\[\Rightarrow I=\dfrac{1}{9}\left[ \tan t \right]_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}\]
The above can be written as
\[\Rightarrow I=\dfrac{1}{9}\left[ \tan \dfrac{\pi }{6}-\tan \left( -\dfrac{\pi }{6} \right) \right]\]
Now, using the formula \[\tan \left( -x \right)=-\tan x\], we can write
\[\Rightarrow I=\dfrac{1}{9}\left[ \tan \dfrac{\pi }{6}+\tan \dfrac{\pi }{6} \right]\]
The above can be written as
\[\Rightarrow I=\dfrac{2}{9}\left[ \tan \dfrac{\pi }{6} \right]\]
Using the formula \[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\], we can write
\[\Rightarrow I=\dfrac{2}{9}\dfrac{1}{\sqrt{3}}=\dfrac{2}{9\sqrt{3}}\]
Hence, we have integrated the term \[\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}\] and we have got our answer as \[\dfrac{2}{9\sqrt{3}}\]
Note: We should have a better knowledge in the topic of integration for solving this type of question.
Remember the following formulas to solve this type of question easily:
\[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\]
\[\tan \left( -x \right)=-\tan x\]
\[\int{{{\sec }^{2}}xdx}=\tan x\]
\[\sec x=\dfrac{1}{\cos x}\]
\[{{\left( a-b \right)}^{2}}={{\left( b-a \right)}^{2}}={{a}^{2}}-2\times a\times b+{{b}^{2}}\]
\[\left( 1-{{\sin }^{2}}t \right)={{\cos }^{2}}t\]
Complete step-by-step solution:
Let us solve this question.
We can write \[5+4x-{{x}^{2}}\] as
\[5+4x-{{x}^{2}}=9-\left( 4-4x+{{x}^{2}} \right)\]
Using the formula \[{{\left( a-b \right)}^{2}}={{\left( b-a \right)}^{2}}={{a}^{2}}-2\times a\times b+{{b}^{2}}\], we can write the above as
\[\Rightarrow 5+4x-{{x}^{2}}=9-{{\left( x-2 \right)}^{2}}\]
The above can also be written as
\[\Rightarrow 5+4x-{{x}^{2}}={{3}^{2}}-{{\left( x-2 \right)}^{2}}\]
Now, we will do the substitution.
Let us take \[\left( x-2 \right)\] as \[3\sin t\]
So, we can write
\[\left( x-2 \right)=3\sin t\]
Now, differentiating both sides of the above equation, we get
\[dx=3\cos tdt\]
Now, we know that we have to integrate the term \[\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx\] having limits as \[\dfrac{7}{2}\] and \[\dfrac{1}{2}\]. So, let us write
\[I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}\]
The above can also be written as
\[\Rightarrow I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( x-2 \right)}^{2}} \right)}^{\dfrac{3}{2}}}}dx}\]
Now, putting the values of \[\left( x-2 \right)\] as \[3\sin t\] and \[dx\] as \[3\cos tdt\] that we have found above, we can write
\[\Rightarrow I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
We are changing the variable, so limits will also change according to them. We can write
At \[x=\dfrac{7}{2}\],
\[\left( \dfrac{7}{2}-2 \right)=3\sin t\]
\[\Rightarrow \left( \dfrac{1}{2} \right)=\sin t\]
\[\Rightarrow t=\dfrac{\pi }{6}\]
So, at \[x=\dfrac{7}{2}\], \[t=\dfrac{\pi }{6}\]
And at \[x=\dfrac{1}{2}\],
\[\left( \dfrac{1}{2}-2 \right)=3\sin t\]
\[\Rightarrow \left( -\dfrac{3}{2} \right)=3\sin t\]
\[\Rightarrow \left( -\dfrac{1}{2} \right)=\sin t\]
\[\Rightarrow t=-\dfrac{\pi }{6}\]
So, at \[x=\dfrac{1}{2}\], \[t=-\dfrac{\pi }{6}\]
Now, we can write \[I=\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}\] as
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\left( {{3}^{2}}-{{\left( 3\sin t \right)}^{2}} \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\left( {{3}^{2}}-{{3}^{2}}{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2\times \dfrac{3}{2}}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{3}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}3\cos tdt}\]
The above can also be written as
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\left( 1-{{\sin }^{2}}t \right)}^{\dfrac{3}{2}}}}\cos tdt}\]
Using the formula \[\left( 1-{{\sin }^{2}}t \right)={{\cos }^{2}}t\], we can write
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\left( {{\cos }^{2}}t \right)}^{\dfrac{3}{2}}}}\cos tdt}\]
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{2\times \dfrac{3}{2}}}t}\cos tdt}\]
\[\Rightarrow I=\int\limits_{\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{3}}t}\cos tdt}\]
The above can also be written as
\[\Rightarrow I=\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{3}^{2}}{{\cos }^{2}}t}dt}\]
\[\Rightarrow I=\dfrac{1}{{{3}^{2}}}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\cos }^{2}}t}dt}\]
\[\Rightarrow I=\dfrac{1}{9}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{\dfrac{1}{{{\cos }^{2}}t}dt}\]
\[\sec x=\dfrac{1}{\cos x}\]
Using the formula \[\sec x=\dfrac{1}{\cos x}\], we can the above as
\[\Rightarrow I=\dfrac{1}{9}\int\limits_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}{{{\sec }^{2}}tdt}\]
Using the formula \[\int{{{\sec }^{2}}xdx}=\tan x\], we can write the above as
\[\Rightarrow I=\dfrac{1}{9}\left[ \tan t \right]_{-\dfrac{\pi }{6}}^{\dfrac{\pi }{6}}\]
The above can be written as
\[\Rightarrow I=\dfrac{1}{9}\left[ \tan \dfrac{\pi }{6}-\tan \left( -\dfrac{\pi }{6} \right) \right]\]
Now, using the formula \[\tan \left( -x \right)=-\tan x\], we can write
\[\Rightarrow I=\dfrac{1}{9}\left[ \tan \dfrac{\pi }{6}+\tan \dfrac{\pi }{6} \right]\]
The above can be written as
\[\Rightarrow I=\dfrac{2}{9}\left[ \tan \dfrac{\pi }{6} \right]\]
Using the formula \[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\], we can write
\[\Rightarrow I=\dfrac{2}{9}\dfrac{1}{\sqrt{3}}=\dfrac{2}{9\sqrt{3}}\]
Hence, we have integrated the term \[\int\limits_{\dfrac{1}{2}}^{\dfrac{7}{2}}{\dfrac{1}{{{\left( 5+4x-{{x}^{2}} \right)}^{\dfrac{3}{2}}}}dx}\] and we have got our answer as \[\dfrac{2}{9\sqrt{3}}\]
Note: We should have a better knowledge in the topic of integration for solving this type of question.
Remember the following formulas to solve this type of question easily:
\[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\]
\[\tan \left( -x \right)=-\tan x\]
\[\int{{{\sec }^{2}}xdx}=\tan x\]
\[\sec x=\dfrac{1}{\cos x}\]
\[{{\left( a-b \right)}^{2}}={{\left( b-a \right)}^{2}}={{a}^{2}}-2\times a\times b+{{b}^{2}}\]
\[\left( 1-{{\sin }^{2}}t \right)={{\cos }^{2}}t\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

