
Integrate \[\dfrac{1}{1-\cot x}\] with respect to x.
Answer
484.8k+ views
Hint: In this question, we have to find the value of \[\int{\dfrac{1}{1-\cot x}dx.}\] For this, we will use the following properties
\[\left( i \right)\cot x=\dfrac{\cos x}{\sin x}\]
\[\left( ii \right)\int{\dfrac{1}{x}dx=\ln \left| x \right|+c}\]
\[\left( iii \right)\int{1.dx=x}\]
We will first simplify our given function and then apply (ii) and (iii) to evaluate our integral.
Complete step-by-step answer:
We are given our integral as \[\int{\dfrac{1}{1-\cot x}dx.}\] Let us first simplify the given functions. We know that \[\cot x=\dfrac{\cos x}{\sin x},\] so we get
\[\int{\dfrac{1}{1-\dfrac{\cos x}{\sin x}}dx}\]
Taking LCM, we get,
\[\Rightarrow \int{\dfrac{1}{\dfrac{\sin x-\cos x}{\sin x}}dx}\]
\[\Rightarrow \int{\dfrac{\sin x}{\sin x-\cos x}dx}\]
Now, multiplying and dividing by 2, we get,
\[\Rightarrow \int{\dfrac{2\sin x}{2\left( \sin x-\cos x \right)}dx}\]
\[\Rightarrow \dfrac{1}{2}\int{\dfrac{2\sin x}{\left( \sin x-\cos x \right)}dx}\]
\[\Rightarrow \dfrac{1}{2}\int{\dfrac{\sin x+\sin x}{\sin x-\cos x}dx}\]
Adding and subtracting cos x in the numerator, we get,
\[\Rightarrow \dfrac{1}{2}\int{\dfrac{\sin x+\sin x+\cos x-\cos x}{\sin x-\cos x}dx}\]
Rearranging the terms, we get,
\[\Rightarrow \dfrac{1}{2}\int{\left( \dfrac{\sin x-\cos x}{\sin x-\cos x}+\dfrac{\sin x+\cos x}{\sin x-\cos x} \right)dx}\]
\[\Rightarrow \dfrac{1}{2}\int{\left( 1+\dfrac{\sin x+\cos x}{\sin x-\cos x} \right)dx}\]
Separating the integrals, we get,
\[\Rightarrow \dfrac{1}{2}\int{1.dx+\dfrac{1}{2}\int{\left( \dfrac{\sin x+\cos x}{\sin x-\cos x} \right)}dx}......\left( i \right)\]
Now, let us evaluate the integral separately. Let us assume, \[{{I}_{1}}=\int{1.dx}\] and \[{{I}_{2}}=\int{\dfrac{\left( \sin x+\cos x \right)}{\left( \sin x-\cos x \right)}dx}.\] Let us evaluate \[{{I}_{1}}\] first. So, we have, \[{{I}_{1}}=\int{1.dx}.\]
We know that, \[\int{1.dx}=x+c,\] so we get,
\[{{I}_{1}}=x+{{c}_{1}}\left[ {{c}_{1}}\text{ is any constant} \right]\]
Now, let us evaluate \[{{I}_{2}}.\] We have,
\[{{I}_{2}}=\int{\dfrac{\left( \sin x+\cos x \right)}{\left( \sin x-\cos x \right)}dx}\]
Let us put sin x – cos x = t. Taking the derivative with respect to x, we get,
\[\Rightarrow \dfrac{d}{dx}\left( \sin x-\cos x \right)=\dfrac{dt}{dx}\]
Since, \[\dfrac{d}{dx}\sin x=\cos x\] and \[\dfrac{d}{dx}\cos x=-\sin x.\] So, we get,
\[\Rightarrow \cos x-\left( -\sin x \right)=\dfrac{dt}{dx}\]
\[\Rightarrow \sin x+\cos x=\dfrac{dt}{dx}\]
Cross multiplying we get,
\[\Rightarrow dt=\left( \sin x+\cos x \right)dx\]
In \[{{I}_{2}}\] putting the values, we get,
\[{{I}_{2}}=\int{\dfrac{dt}{t}}\]
\[\Rightarrow {{I}_{2}}=\int{\dfrac{1}{t}dt}\]
We know that, \[\int{\dfrac{1}{x}dx=\ln \left| x \right|+c}.\]
Hence, we get,
\[\Rightarrow {{I}_{2}}=\ln \left| t \right|+{{c}_{2}}\left[ {{c}_{2}}\text{ is any constant} \right]\]
Since t was supposed to be sin x – cos x, so,
\[\Rightarrow {{I}_{2}}=\ln \left| \sin x-\cos x \right|+{{c}_{2}}\]
Now putting the values of \[{{I}_{1}}\] and \[{{I}_{2}}\] in (i), we get,
\[\Rightarrow \dfrac{1}{2}\left( x+{{c}_{1}} \right)+\dfrac{1}{2}\left( \ln \left| \sin x-\cos x \right|+{{c}_{2}} \right)\]
\[\Rightarrow \dfrac{x}{2}+\dfrac{{{c}_{1}}}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+\dfrac{{{c}_{2}}}{2}\]
\[\Rightarrow \dfrac{x}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+c\left[ c=\dfrac{{{c}_{1}}}{2}+\dfrac{{{c}_{2}}}{2} \right]\]
Hence,
\[\int{\dfrac{1}{1-\cot x}dx}=\dfrac{x}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+c\]
Note: The most common mistake that students can make is to forget adding the constant term after evaluating the integral. Take care of the signs while simplifying the fractions. Also, take care of the signs while substituting the values of sin x – cos x. Make sure to take the negative sign with sin x as a derivative of cos x. At the end, we have taken \[\dfrac{{{c}_{1}}}{2}+\dfrac{{{c}_{2}}}{2}\] as c because \[c,{{c}_{1}},{{c}_{2}}\] are any constants and adding \[{{c}_{1}},{{c}_{2}}\] will give any constant which we assumed as c.
\[\left( i \right)\cot x=\dfrac{\cos x}{\sin x}\]
\[\left( ii \right)\int{\dfrac{1}{x}dx=\ln \left| x \right|+c}\]
\[\left( iii \right)\int{1.dx=x}\]
We will first simplify our given function and then apply (ii) and (iii) to evaluate our integral.
Complete step-by-step answer:
We are given our integral as \[\int{\dfrac{1}{1-\cot x}dx.}\] Let us first simplify the given functions. We know that \[\cot x=\dfrac{\cos x}{\sin x},\] so we get
\[\int{\dfrac{1}{1-\dfrac{\cos x}{\sin x}}dx}\]
Taking LCM, we get,
\[\Rightarrow \int{\dfrac{1}{\dfrac{\sin x-\cos x}{\sin x}}dx}\]
\[\Rightarrow \int{\dfrac{\sin x}{\sin x-\cos x}dx}\]
Now, multiplying and dividing by 2, we get,
\[\Rightarrow \int{\dfrac{2\sin x}{2\left( \sin x-\cos x \right)}dx}\]
\[\Rightarrow \dfrac{1}{2}\int{\dfrac{2\sin x}{\left( \sin x-\cos x \right)}dx}\]
\[\Rightarrow \dfrac{1}{2}\int{\dfrac{\sin x+\sin x}{\sin x-\cos x}dx}\]
Adding and subtracting cos x in the numerator, we get,
\[\Rightarrow \dfrac{1}{2}\int{\dfrac{\sin x+\sin x+\cos x-\cos x}{\sin x-\cos x}dx}\]
Rearranging the terms, we get,
\[\Rightarrow \dfrac{1}{2}\int{\left( \dfrac{\sin x-\cos x}{\sin x-\cos x}+\dfrac{\sin x+\cos x}{\sin x-\cos x} \right)dx}\]
\[\Rightarrow \dfrac{1}{2}\int{\left( 1+\dfrac{\sin x+\cos x}{\sin x-\cos x} \right)dx}\]
Separating the integrals, we get,
\[\Rightarrow \dfrac{1}{2}\int{1.dx+\dfrac{1}{2}\int{\left( \dfrac{\sin x+\cos x}{\sin x-\cos x} \right)}dx}......\left( i \right)\]
Now, let us evaluate the integral separately. Let us assume, \[{{I}_{1}}=\int{1.dx}\] and \[{{I}_{2}}=\int{\dfrac{\left( \sin x+\cos x \right)}{\left( \sin x-\cos x \right)}dx}.\] Let us evaluate \[{{I}_{1}}\] first. So, we have, \[{{I}_{1}}=\int{1.dx}.\]
We know that, \[\int{1.dx}=x+c,\] so we get,
\[{{I}_{1}}=x+{{c}_{1}}\left[ {{c}_{1}}\text{ is any constant} \right]\]
Now, let us evaluate \[{{I}_{2}}.\] We have,
\[{{I}_{2}}=\int{\dfrac{\left( \sin x+\cos x \right)}{\left( \sin x-\cos x \right)}dx}\]
Let us put sin x – cos x = t. Taking the derivative with respect to x, we get,
\[\Rightarrow \dfrac{d}{dx}\left( \sin x-\cos x \right)=\dfrac{dt}{dx}\]
Since, \[\dfrac{d}{dx}\sin x=\cos x\] and \[\dfrac{d}{dx}\cos x=-\sin x.\] So, we get,
\[\Rightarrow \cos x-\left( -\sin x \right)=\dfrac{dt}{dx}\]
\[\Rightarrow \sin x+\cos x=\dfrac{dt}{dx}\]
Cross multiplying we get,
\[\Rightarrow dt=\left( \sin x+\cos x \right)dx\]
In \[{{I}_{2}}\] putting the values, we get,
\[{{I}_{2}}=\int{\dfrac{dt}{t}}\]
\[\Rightarrow {{I}_{2}}=\int{\dfrac{1}{t}dt}\]
We know that, \[\int{\dfrac{1}{x}dx=\ln \left| x \right|+c}.\]
Hence, we get,
\[\Rightarrow {{I}_{2}}=\ln \left| t \right|+{{c}_{2}}\left[ {{c}_{2}}\text{ is any constant} \right]\]
Since t was supposed to be sin x – cos x, so,
\[\Rightarrow {{I}_{2}}=\ln \left| \sin x-\cos x \right|+{{c}_{2}}\]
Now putting the values of \[{{I}_{1}}\] and \[{{I}_{2}}\] in (i), we get,
\[\Rightarrow \dfrac{1}{2}\left( x+{{c}_{1}} \right)+\dfrac{1}{2}\left( \ln \left| \sin x-\cos x \right|+{{c}_{2}} \right)\]
\[\Rightarrow \dfrac{x}{2}+\dfrac{{{c}_{1}}}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+\dfrac{{{c}_{2}}}{2}\]
\[\Rightarrow \dfrac{x}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+c\left[ c=\dfrac{{{c}_{1}}}{2}+\dfrac{{{c}_{2}}}{2} \right]\]
Hence,
\[\int{\dfrac{1}{1-\cot x}dx}=\dfrac{x}{2}+\dfrac{1}{2}\ln \left| \sin x-\cos x \right|+c\]
Note: The most common mistake that students can make is to forget adding the constant term after evaluating the integral. Take care of the signs while simplifying the fractions. Also, take care of the signs while substituting the values of sin x – cos x. Make sure to take the negative sign with sin x as a derivative of cos x. At the end, we have taken \[\dfrac{{{c}_{1}}}{2}+\dfrac{{{c}_{2}}}{2}\] as c because \[c,{{c}_{1}},{{c}_{2}}\] are any constants and adding \[{{c}_{1}},{{c}_{2}}\] will give any constant which we assumed as c.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
