
What is the integral of ${\tan ^5}\left( x \right)dx$?
Answer
524.4k+ views
Hint: To find the integral of ${\tan ^5}\left( x \right)dx$, first of all we have to write ${\tan ^5}\left( x \right)dx$ as ${\tan ^3}\left( x \right) \times {\tan ^2}\left( x \right)$. Then we have to use the identity $1 + {\tan ^2}x = {\sec ^2}x$ and substitute the value of ${\tan ^2}x$ in the obtained equation. After that simplify the equation and spate all the integration terms.
Now, we will have to use the property
$ \Rightarrow \int {{{\left[ {f\left( x \right)} \right]}^n} \cdot f'\left( x \right)dx = \dfrac{{{{\left[ {f\left( x \right)} \right]}^{n + 1}}}}{{n + 1}}} $ to find the integral.
Complete step by step solution:
In this question, we have to find the integral of ${\tan ^5}\left( x \right)dx$.
$ \Rightarrow I = \int {{{\tan }^5}\left( x \right)dx} $ - - - - - - - - - (1)
Now, we can write ${\tan ^5}\left( x \right)$ as ${\tan ^3}\left( x \right) \times {\tan ^2}\left( x \right)$. Therefore, equation (1) becomes,
$ \Rightarrow I = \int {{{\tan }^3}x \cdot {{\tan }^2}xdx} $- - - - - - - (2)
Now, we know that
$
\Rightarrow 1 + {\tan ^2}x = {\sec ^2}x \\
\Rightarrow {\tan ^2}x = {\sec ^2}x - 1 \\
$
Putting the value of ${\tan ^2}x$ in equation (2), we get
$ \Rightarrow I = \int {{{\tan }^3}x \cdot \left( {{{\sec }^2}x - 1} \right)dx} $
$ \Rightarrow I = \int {{{\tan }^3}x \cdot {{\sec }^2}x - {{\tan }^3}xdx} $- - - - - - - (3)
Now, again we can write ${\tan ^3}x$ as ${\tan ^2}x \times \tan x$. Therefore, equation (3) becomes
$ \Rightarrow I = \int {{{\tan }^3}x \cdot {{\sec }^2}x - {{\tan }^2}x \cdot \tan xdx} $- - - - - (4)
Now, again substituting the value of ${\tan ^2}x$ in equation (4), we get
\[ \Rightarrow I = \int {\left( {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right) - \left( {{{\sec }^2}x - 1} \right) \cdot \tan x} \right)dx} \]
\[ \Rightarrow I = \left( {\int {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right) - \left( {{{\sec }^2}x \cdot \tan x} \right)} + \tan x} \right)dx\]- - - - - - - - (5)
Now, integrating each term separately in equation (5), we get
$ \Rightarrow I = \int {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right)dx - \int {\left( {{{\sec }^2}x \cdot \tan x} \right)dx + \int {\tan xdx} } } $- - - - - (6)
Now, there is a proved theorem, that
$ \Rightarrow \int {{{\left[ {f\left( x \right)} \right]}^n} \cdot f'\left( x \right)dx = \dfrac{{{{\left[ {f\left( x \right)} \right]}^{n + 1}}}}{{n + 1}}} $
Here, in our equation (6) in first integration term,
$
\Rightarrow f\left( x \right) = \tan x \\
\Rightarrow n = 3 \\
\Rightarrow f'\left( x \right) = {\sec ^2}x \\
$
Hence,
\[ \Rightarrow \int {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right)dx} = \dfrac{{{{\tan }^{3 + 1}}x}}{{3 + 1}} = \dfrac{{{{\tan }^4}x}}{4}\]
And in second integration term,
$
\Rightarrow f\left( x \right) = \tan x \\
\Rightarrow n = 1 \\
\Rightarrow f'\left( x \right) = {\sec ^2}x \\
$
Hence,
$ \Rightarrow \int {\left( {{{\sec }^2}x \cdot \tan x} \right)dx = \dfrac{{{{\tan }^{1 + 1}}x}}{{1 + 1}}} = \dfrac{{{{\tan }^2}x}}{2}$
And, $\int {\tan xdx = \ln \sec x} $
Therefore, equation (6) becomes
$ \Rightarrow I = \dfrac{{{{\tan }^4}x}}{4} - \dfrac{{{{\tan }^2}x}}{2} + \ln \sec x + c$
Where, c is the integration constant.
Hence, the integral of ${\tan ^5}\left( x \right)dx$ is $\dfrac{{{{\tan }^4}x}}{4} - \dfrac{{{{\tan }^2}x}}{2} + \ln \sec x + c$.
Note:
We cannot directly integrate trigonometric functions with power greater than 1 as there is no direct formula for it. We have to use the relations and formulas to simplify the expression so that we can integrate it easily. So, while finding the integral of trigonometric functions with power greater than 1, always look for the relations that can be used to simplify the expression.
Now, we will have to use the property
$ \Rightarrow \int {{{\left[ {f\left( x \right)} \right]}^n} \cdot f'\left( x \right)dx = \dfrac{{{{\left[ {f\left( x \right)} \right]}^{n + 1}}}}{{n + 1}}} $ to find the integral.
Complete step by step solution:
In this question, we have to find the integral of ${\tan ^5}\left( x \right)dx$.
$ \Rightarrow I = \int {{{\tan }^5}\left( x \right)dx} $ - - - - - - - - - (1)
Now, we can write ${\tan ^5}\left( x \right)$ as ${\tan ^3}\left( x \right) \times {\tan ^2}\left( x \right)$. Therefore, equation (1) becomes,
$ \Rightarrow I = \int {{{\tan }^3}x \cdot {{\tan }^2}xdx} $- - - - - - - (2)
Now, we know that
$
\Rightarrow 1 + {\tan ^2}x = {\sec ^2}x \\
\Rightarrow {\tan ^2}x = {\sec ^2}x - 1 \\
$
Putting the value of ${\tan ^2}x$ in equation (2), we get
$ \Rightarrow I = \int {{{\tan }^3}x \cdot \left( {{{\sec }^2}x - 1} \right)dx} $
$ \Rightarrow I = \int {{{\tan }^3}x \cdot {{\sec }^2}x - {{\tan }^3}xdx} $- - - - - - - (3)
Now, again we can write ${\tan ^3}x$ as ${\tan ^2}x \times \tan x$. Therefore, equation (3) becomes
$ \Rightarrow I = \int {{{\tan }^3}x \cdot {{\sec }^2}x - {{\tan }^2}x \cdot \tan xdx} $- - - - - (4)
Now, again substituting the value of ${\tan ^2}x$ in equation (4), we get
\[ \Rightarrow I = \int {\left( {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right) - \left( {{{\sec }^2}x - 1} \right) \cdot \tan x} \right)dx} \]
\[ \Rightarrow I = \left( {\int {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right) - \left( {{{\sec }^2}x \cdot \tan x} \right)} + \tan x} \right)dx\]- - - - - - - - (5)
Now, integrating each term separately in equation (5), we get
$ \Rightarrow I = \int {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right)dx - \int {\left( {{{\sec }^2}x \cdot \tan x} \right)dx + \int {\tan xdx} } } $- - - - - (6)
Now, there is a proved theorem, that
$ \Rightarrow \int {{{\left[ {f\left( x \right)} \right]}^n} \cdot f'\left( x \right)dx = \dfrac{{{{\left[ {f\left( x \right)} \right]}^{n + 1}}}}{{n + 1}}} $
Here, in our equation (6) in first integration term,
$
\Rightarrow f\left( x \right) = \tan x \\
\Rightarrow n = 3 \\
\Rightarrow f'\left( x \right) = {\sec ^2}x \\
$
Hence,
\[ \Rightarrow \int {\left( {{{\tan }^3}x \cdot {{\sec }^2}x} \right)dx} = \dfrac{{{{\tan }^{3 + 1}}x}}{{3 + 1}} = \dfrac{{{{\tan }^4}x}}{4}\]
And in second integration term,
$
\Rightarrow f\left( x \right) = \tan x \\
\Rightarrow n = 1 \\
\Rightarrow f'\left( x \right) = {\sec ^2}x \\
$
Hence,
$ \Rightarrow \int {\left( {{{\sec }^2}x \cdot \tan x} \right)dx = \dfrac{{{{\tan }^{1 + 1}}x}}{{1 + 1}}} = \dfrac{{{{\tan }^2}x}}{2}$
And, $\int {\tan xdx = \ln \sec x} $
Therefore, equation (6) becomes
$ \Rightarrow I = \dfrac{{{{\tan }^4}x}}{4} - \dfrac{{{{\tan }^2}x}}{2} + \ln \sec x + c$
Where, c is the integration constant.
Hence, the integral of ${\tan ^5}\left( x \right)dx$ is $\dfrac{{{{\tan }^4}x}}{4} - \dfrac{{{{\tan }^2}x}}{2} + \ln \sec x + c$.
Note:
We cannot directly integrate trigonometric functions with power greater than 1 as there is no direct formula for it. We have to use the relations and formulas to simplify the expression so that we can integrate it easily. So, while finding the integral of trigonometric functions with power greater than 1, always look for the relations that can be used to simplify the expression.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

