
What is the integral of $\int{x{{\sin }^{2}}\left( x \right)dx}$?
Answer
531k+ views
Hint: Use the trigonometric identity ${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ and simplify the function inside the integral. Now, break the integral into two parts and for the first part use the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ to find its integral. For the second part use the ILATE rule and consider x as function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and $\cos 2x$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$ and apply the rule of integration by parts given as $\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)dx}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx}$ to get the answer. Here, \[{{f}_{1}}'\left( x \right)=\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right) \right)\]. Use the formulas \[\int{\cos \left( ax+b \right)dx}=\dfrac{\sin \left( ax+b \right)}{a}\] and \[\int{\sin \left( ax+b \right)dx}=\dfrac{-\cos \left( ax+b \right)}{a}\] to evaluate the integral.
Complete step by step answer:
Here we are asked to find the integral of the function \[x{{\sin }^{2}}\left( x \right)\]. First let us simplify the trigonometric function using the half angle formula. Let us assume the integral as I, so we have,
\[\Rightarrow I=\int{x{{\sin }^{2}}\left( x \right)dx}\]
Using the half angle trigonometric identity given as ${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ we get,
\[\Rightarrow I=\int{x\left( \dfrac{1-\cos 2x}{2} \right)dx}\]
Since, 2 is a constant so it can be taken out of the integral sign, we have,
\[\Rightarrow I=\dfrac{1}{2}\int{\left( x-x\cos 2x \right)dx}\]
Breaking the integral into two parts we get,
\[\Rightarrow I=\dfrac{1}{2}\left( \int{xdx}-\int{x\cos 2xdx} \right)\]
Using the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ for the integral of the first term we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left( \dfrac{{{x}^{1+1}}}{1+1}-\int{x\cos 2xdx} \right) \\
& \Rightarrow I=\dfrac{1}{2}\left( \dfrac{{{x}^{2}}}{2}-\int{x\cos 2xdx} \right) \\
\end{align}\]
Clearly we can see that in the second part we have a product of an algebraic function and a trigonometric function so we need to apply integration by parts to find the integral. Now, according to the ILATE rule we have to assume x as the function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and $\cos 2x$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$. Here, ILATE stands for: -
I – Inverse trigonometric function
L – Logarithmic function
A – Algebraic function
T – Trigonometric function
E – Exponential function
The numbering of the functions is done according to the order of appearance in the above list. Therefore assuming x as function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and $\cos 2x$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$we have the formula $\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)dx}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx}$ to calculate the integral of product of two functions. So we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\int{\cos 2xdx}-\int{\left( \left( \int{\cos 2xdx} \right)\times \dfrac{d\left( x \right)}{dx} \right)dx} \right\} \right] \\
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\int{\cos 2xdx}-\int{\left( \left( \int{\cos 2xdx} \right) \right)dx} \right\} \right] \\
\end{align}\]
Using the formula \[\int{\cos \left( ax+b \right)dx}=\frac{\sin \left( ax+b \right)}{a}\] we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\left( \dfrac{\sin 2x}{2} \right)-\int{\dfrac{\sin 2x}{2}dx} \right\} \right] \\
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\left( \dfrac{\sin 2x}{2} \right)-\dfrac{1}{2}\int{\sin 2xdx} \right\} \right] \\
\end{align}\]
Using the formula \[\int{\sin \left( ax+b \right)dx}=\dfrac{-\cos \left( ax+b \right)}{a}\] we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\left( \dfrac{\sin 2x}{2} \right)-\dfrac{1}{2}\left( \dfrac{-\cos 2x}{2} \right) \right\} \right] \\
& \therefore I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}+\dfrac{x\sin 2x}{2}-\dfrac{\cos 2x}{4} \right]+c \\
\end{align}\]
Here ‘c’ is the constant of integration as we are evaluating an indefinite integral.
Note: Note that we cannot apply the ILATE rule and integration by parts directly in the function \[x{{\sin }^{2}}\left( x \right)\] because we don’t have any direct formula for the integration of the function ${{\sin }^{2}}x$ so it must be converted into $\cos 2x$ using the half angle formula. Also, remember that you cannot apply the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ for n = -1 because in that case we have the function $\dfrac{1}{x}$ whose integral is $\ln x$.
Complete step by step answer:
Here we are asked to find the integral of the function \[x{{\sin }^{2}}\left( x \right)\]. First let us simplify the trigonometric function using the half angle formula. Let us assume the integral as I, so we have,
\[\Rightarrow I=\int{x{{\sin }^{2}}\left( x \right)dx}\]
Using the half angle trigonometric identity given as ${{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}$ we get,
\[\Rightarrow I=\int{x\left( \dfrac{1-\cos 2x}{2} \right)dx}\]
Since, 2 is a constant so it can be taken out of the integral sign, we have,
\[\Rightarrow I=\dfrac{1}{2}\int{\left( x-x\cos 2x \right)dx}\]
Breaking the integral into two parts we get,
\[\Rightarrow I=\dfrac{1}{2}\left( \int{xdx}-\int{x\cos 2xdx} \right)\]
Using the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ for the integral of the first term we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left( \dfrac{{{x}^{1+1}}}{1+1}-\int{x\cos 2xdx} \right) \\
& \Rightarrow I=\dfrac{1}{2}\left( \dfrac{{{x}^{2}}}{2}-\int{x\cos 2xdx} \right) \\
\end{align}\]
Clearly we can see that in the second part we have a product of an algebraic function and a trigonometric function so we need to apply integration by parts to find the integral. Now, according to the ILATE rule we have to assume x as the function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and $\cos 2x$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$. Here, ILATE stands for: -
I – Inverse trigonometric function
L – Logarithmic function
A – Algebraic function
T – Trigonometric function
E – Exponential function
The numbering of the functions is done according to the order of appearance in the above list. Therefore assuming x as function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and $\cos 2x$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$we have the formula $\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)dx}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx}$ to calculate the integral of product of two functions. So we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\int{\cos 2xdx}-\int{\left( \left( \int{\cos 2xdx} \right)\times \dfrac{d\left( x \right)}{dx} \right)dx} \right\} \right] \\
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\int{\cos 2xdx}-\int{\left( \left( \int{\cos 2xdx} \right) \right)dx} \right\} \right] \\
\end{align}\]
Using the formula \[\int{\cos \left( ax+b \right)dx}=\frac{\sin \left( ax+b \right)}{a}\] we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\left( \dfrac{\sin 2x}{2} \right)-\int{\dfrac{\sin 2x}{2}dx} \right\} \right] \\
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\left( \dfrac{\sin 2x}{2} \right)-\dfrac{1}{2}\int{\sin 2xdx} \right\} \right] \\
\end{align}\]
Using the formula \[\int{\sin \left( ax+b \right)dx}=\dfrac{-\cos \left( ax+b \right)}{a}\] we get,
\[\begin{align}
& \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\{ x\left( \dfrac{\sin 2x}{2} \right)-\dfrac{1}{2}\left( \dfrac{-\cos 2x}{2} \right) \right\} \right] \\
& \therefore I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}+\dfrac{x\sin 2x}{2}-\dfrac{\cos 2x}{4} \right]+c \\
\end{align}\]
Here ‘c’ is the constant of integration as we are evaluating an indefinite integral.
Note: Note that we cannot apply the ILATE rule and integration by parts directly in the function \[x{{\sin }^{2}}\left( x \right)\] because we don’t have any direct formula for the integration of the function ${{\sin }^{2}}x$ so it must be converted into $\cos 2x$ using the half angle formula. Also, remember that you cannot apply the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ for n = -1 because in that case we have the function $\dfrac{1}{x}$ whose integral is $\ln x$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

