
What is the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ .
Answer
466.8k+ views
Hint: To find the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ , we have to equate $t=\cos x$ . We will have to differentiate t with respect to x. Then from this, we have to find dx. We should substitute these values in the given integral. Then, we have to use the trigonometric identity ${{\sin }^{2}}x=1-{{\cos }^{2}}x$ . Then we have to simplify and integrate and substitute back for t.
Complete step by step solution:
We have to find the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ . Let us denote $t=\cos x...\left( i \right)$ .
We have to differentiate t with respect to x.
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=-\sin x \\
& \Rightarrow dt=-\sin xdx \\
\end{align}$
From the above, we have to find dx.
$\Rightarrow dx=-\dfrac{dt}{\sin x}...\left( ii \right)$
Let us substitute (i) and (ii) in the given integral.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{{{\sin }^{3}}x\times {{t}^{4}}\times -\dfrac{dt}{\sin x}}$
Let us cancel sin x from the numerator and denominator.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{\sin }^{2}}x\times {{t}^{4}}\times dt}...\left( iii \right)$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .
$\Rightarrow {{\sin }^{2}}x=1-{{\cos }^{2}}x$
Let us substitute the above identity in equation (iii).
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{\cos }^{2}}x \right)\times {{t}^{4}}\times dt}...\left( iii \right)$
Let us substitute (i) in the above equation.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{t}^{2}} \right){{t}^{4}}dt}$
Let us apply distributive law.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{\left( -{{t}^{4}}+{{t}^{6}} \right)dt}$
Now, we have to apply the property $\int{\left( mx+nx \right)dx}=\int{mxdx}+\int{nxdx}$ . Then, the above equation can be written as
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{t}^{4}}dt}+\int{{{t}^{6}}dt}$
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$ . The integral of the above equation becomes
$\begin{align}
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{{{t}^{4+1}}}{4+1}+\dfrac{{{t}^{6+1}}}{6+1}+C \\
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{t}^{5}}+\dfrac{1}{7}{{t}^{7}}+C \\
\end{align}$
Now, we have to substitute back the value of t from equation (i). Then, the above equation becomes
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Hence, the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ is $-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Note: Students must know how to integrate and integrate basic functions. They must also know the trigonometric properties. Students must never forget to put the constant after integration. They must not forget to substitute back the value of t.
Complete step by step solution:
We have to find the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ . Let us denote $t=\cos x...\left( i \right)$ .
We have to differentiate t with respect to x.
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=-\sin x \\
& \Rightarrow dt=-\sin xdx \\
\end{align}$
From the above, we have to find dx.
$\Rightarrow dx=-\dfrac{dt}{\sin x}...\left( ii \right)$
Let us substitute (i) and (ii) in the given integral.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{{{\sin }^{3}}x\times {{t}^{4}}\times -\dfrac{dt}{\sin x}}$
Let us cancel sin x from the numerator and denominator.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{\sin }^{2}}x\times {{t}^{4}}\times dt}...\left( iii \right)$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .
$\Rightarrow {{\sin }^{2}}x=1-{{\cos }^{2}}x$
Let us substitute the above identity in equation (iii).
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{\cos }^{2}}x \right)\times {{t}^{4}}\times dt}...\left( iii \right)$
Let us substitute (i) in the above equation.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{t}^{2}} \right){{t}^{4}}dt}$
Let us apply distributive law.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{\left( -{{t}^{4}}+{{t}^{6}} \right)dt}$
Now, we have to apply the property $\int{\left( mx+nx \right)dx}=\int{mxdx}+\int{nxdx}$ . Then, the above equation can be written as
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{t}^{4}}dt}+\int{{{t}^{6}}dt}$
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$ . The integral of the above equation becomes
$\begin{align}
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{{{t}^{4+1}}}{4+1}+\dfrac{{{t}^{6+1}}}{6+1}+C \\
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{t}^{5}}+\dfrac{1}{7}{{t}^{7}}+C \\
\end{align}$
Now, we have to substitute back the value of t from equation (i). Then, the above equation becomes
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Hence, the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ is $-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Note: Students must know how to integrate and integrate basic functions. They must also know the trigonometric properties. Students must never forget to put the constant after integration. They must not forget to substitute back the value of t.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
