
What is the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ .
Answer
514.5k+ views
Hint: To find the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ , we have to equate $t=\cos x$ . We will have to differentiate t with respect to x. Then from this, we have to find dx. We should substitute these values in the given integral. Then, we have to use the trigonometric identity ${{\sin }^{2}}x=1-{{\cos }^{2}}x$ . Then we have to simplify and integrate and substitute back for t.
Complete step by step solution:
We have to find the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ . Let us denote $t=\cos x...\left( i \right)$ .
We have to differentiate t with respect to x.
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=-\sin x \\
& \Rightarrow dt=-\sin xdx \\
\end{align}$
From the above, we have to find dx.
$\Rightarrow dx=-\dfrac{dt}{\sin x}...\left( ii \right)$
Let us substitute (i) and (ii) in the given integral.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{{{\sin }^{3}}x\times {{t}^{4}}\times -\dfrac{dt}{\sin x}}$
Let us cancel sin x from the numerator and denominator.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{\sin }^{2}}x\times {{t}^{4}}\times dt}...\left( iii \right)$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .
$\Rightarrow {{\sin }^{2}}x=1-{{\cos }^{2}}x$
Let us substitute the above identity in equation (iii).
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{\cos }^{2}}x \right)\times {{t}^{4}}\times dt}...\left( iii \right)$
Let us substitute (i) in the above equation.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{t}^{2}} \right){{t}^{4}}dt}$
Let us apply distributive law.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{\left( -{{t}^{4}}+{{t}^{6}} \right)dt}$
Now, we have to apply the property $\int{\left( mx+nx \right)dx}=\int{mxdx}+\int{nxdx}$ . Then, the above equation can be written as
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{t}^{4}}dt}+\int{{{t}^{6}}dt}$
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$ . The integral of the above equation becomes
$\begin{align}
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{{{t}^{4+1}}}{4+1}+\dfrac{{{t}^{6+1}}}{6+1}+C \\
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{t}^{5}}+\dfrac{1}{7}{{t}^{7}}+C \\
\end{align}$
Now, we have to substitute back the value of t from equation (i). Then, the above equation becomes
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Hence, the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ is $-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Note: Students must know how to integrate and integrate basic functions. They must also know the trigonometric properties. Students must never forget to put the constant after integration. They must not forget to substitute back the value of t.
Complete step by step solution:
We have to find the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ . Let us denote $t=\cos x...\left( i \right)$ .
We have to differentiate t with respect to x.
$\begin{align}
& \Rightarrow \dfrac{dt}{dx}=-\sin x \\
& \Rightarrow dt=-\sin xdx \\
\end{align}$
From the above, we have to find dx.
$\Rightarrow dx=-\dfrac{dt}{\sin x}...\left( ii \right)$
Let us substitute (i) and (ii) in the given integral.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{{{\sin }^{3}}x\times {{t}^{4}}\times -\dfrac{dt}{\sin x}}$
Let us cancel sin x from the numerator and denominator.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{\sin }^{2}}x\times {{t}^{4}}\times dt}...\left( iii \right)$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .
$\Rightarrow {{\sin }^{2}}x=1-{{\cos }^{2}}x$
Let us substitute the above identity in equation (iii).
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{\cos }^{2}}x \right)\times {{t}^{4}}\times dt}...\left( iii \right)$
Let us substitute (i) in the above equation.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-\left( 1-{{t}^{2}} \right){{t}^{4}}dt}$
Let us apply distributive law.
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{\left( -{{t}^{4}}+{{t}^{6}} \right)dt}$
Now, we have to apply the property $\int{\left( mx+nx \right)dx}=\int{mxdx}+\int{nxdx}$ . Then, the above equation can be written as
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=\int{-{{t}^{4}}dt}+\int{{{t}^{6}}dt}$
We know that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$ . The integral of the above equation becomes
$\begin{align}
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{{{t}^{4+1}}}{4+1}+\dfrac{{{t}^{6+1}}}{6+1}+C \\
& \Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{t}^{5}}+\dfrac{1}{7}{{t}^{7}}+C \\
\end{align}$
Now, we have to substitute back the value of t from equation (i). Then, the above equation becomes
$\Rightarrow \int{{{\sin }^{3}}}x{{\cos }^{4}}xdx=-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Hence, the integral of $\int{{{\sin }^{3}}}x{{\cos }^{4}}xdx$ is $-\dfrac{1}{5}{{\cos }^{5}}x+\dfrac{1}{7}{{\cos }^{7}}x+C$
Note: Students must know how to integrate and integrate basic functions. They must also know the trigonometric properties. Students must never forget to put the constant after integration. They must not forget to substitute back the value of t.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

