
What is the integral of $\dfrac{\arctan x}{{{x}^{2}}}$?
Answer
517.5k+ views
Hint: We first explain the term $\dfrac{dy}{dx}$ where $y=f\left( x \right)$. We then need to integrate the equation\[\int{\dfrac{\arctan x}{{{x}^{2}}}dx}\] once to find all the solutions of the differential equation. We know that $\arctan x={{\tan }^{-1}}x$. We take one constant for the integration. We get the equation of a logarithmic function.
Complete step-by-step solution:
We have to find the integral of the equation $\dfrac{\arctan x}{{{x}^{2}}}$. The mathematical
form is \[\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}\].
The main function is $y=f\left( x \right)$.
We have to find the anti-derivative or the integral form of the equation.
We assume ${{\tan }^{-1}}x=\theta $ which gives $x=\tan \theta $. We differentiate the
equation with respect to $x$.
$\begin{align}
& d\left( x \right)=d\left( \tan \theta \right) \\
& \Rightarrow dx={{\sec }^{2}}\theta d\theta \\
& \Rightarrow dx=\left( 1+{{\tan }^{2}}\theta \right)d\theta \\
\end{align}$
Now we replace the values in the equation of \[\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}\] and get
\[\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}=\int{\dfrac{\theta }{{{\tan }^{2}}\theta }{{\sec }^{2}}\theta d\theta }=\int{\theta {{\csc }^{2}}\theta d\theta }\]
We know the integral form of \[\int{{{\csc }^{2}}xdx}=-\cot x+c\] and \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
We use the by parts theorem to find the solution of the integral.
Let’s assume $f\left( x \right)=g\left( x \right)h\left( x \right)$. We need to find the integration
of $\int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx}$.
We take $u=g\left( x \right),v=h\left( x \right)$. This gives $\int{f\left( x \right)dx}=\int{uvdx}$.
The theorem of integration by parts gives $\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx}$.
For our integration \[\int{\theta {{\csc }^{2}}\theta d\theta }\], we take $u=\theta ,v={{\csc
}^{2}}\theta $.
Simplifying the differential form, we get
\[\begin{align}
& \int{\theta {{\csc }^{2}}\theta d\theta }=\theta \int{{{\csc }^{2}}\theta d\theta }-\int{\left( \dfrac{d\theta }{d\theta }\int{{{\csc }^{2}}\theta d\theta } \right)d\theta } \\
&\Rightarrow \int{\theta {{\csc }^{2}}\theta d\theta }=-\theta \cot \theta +\int{\left( \cot \theta
\right)d\theta } \\
\end{align}\].
We also know that \[\int{\left( \cot \theta \right)d\theta }=\log \left| \sin \theta \right|+c\].
Here $c$ is another constant. We replace the value of ${{\tan }^{-1}}x=\theta $.
The integral becomes \[-\theta \cot \theta +\log \left| \sin \theta \right|+c=\dfrac{-{{\tan }^{-1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c\]
The integral form of the equation $\dfrac{\arctan x}{{{x}^{2}}}$ is \[\dfrac{-{{\tan }^{-
1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c\].
Note: The solution of the differential equation is the equation of a logarithmic function. The first order differentiation of \[\dfrac{-{{\tan }^{-1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c\] gives the slope for a certain point which is equal to $\dfrac{dy}{dx}=\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}$.
Complete step-by-step solution:
We have to find the integral of the equation $\dfrac{\arctan x}{{{x}^{2}}}$. The mathematical
form is \[\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}\].
The main function is $y=f\left( x \right)$.
We have to find the anti-derivative or the integral form of the equation.
We assume ${{\tan }^{-1}}x=\theta $ which gives $x=\tan \theta $. We differentiate the
equation with respect to $x$.
$\begin{align}
& d\left( x \right)=d\left( \tan \theta \right) \\
& \Rightarrow dx={{\sec }^{2}}\theta d\theta \\
& \Rightarrow dx=\left( 1+{{\tan }^{2}}\theta \right)d\theta \\
\end{align}$
Now we replace the values in the equation of \[\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}\] and get
\[\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}=\int{\dfrac{\theta }{{{\tan }^{2}}\theta }{{\sec }^{2}}\theta d\theta }=\int{\theta {{\csc }^{2}}\theta d\theta }\]
We know the integral form of \[\int{{{\csc }^{2}}xdx}=-\cot x+c\] and \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
We use the by parts theorem to find the solution of the integral.
Let’s assume $f\left( x \right)=g\left( x \right)h\left( x \right)$. We need to find the integration
of $\int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx}$.
We take $u=g\left( x \right),v=h\left( x \right)$. This gives $\int{f\left( x \right)dx}=\int{uvdx}$.
The theorem of integration by parts gives $\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx}$.
For our integration \[\int{\theta {{\csc }^{2}}\theta d\theta }\], we take $u=\theta ,v={{\csc
}^{2}}\theta $.
Simplifying the differential form, we get
\[\begin{align}
& \int{\theta {{\csc }^{2}}\theta d\theta }=\theta \int{{{\csc }^{2}}\theta d\theta }-\int{\left( \dfrac{d\theta }{d\theta }\int{{{\csc }^{2}}\theta d\theta } \right)d\theta } \\
&\Rightarrow \int{\theta {{\csc }^{2}}\theta d\theta }=-\theta \cot \theta +\int{\left( \cot \theta
\right)d\theta } \\
\end{align}\].
We also know that \[\int{\left( \cot \theta \right)d\theta }=\log \left| \sin \theta \right|+c\].
Here $c$ is another constant. We replace the value of ${{\tan }^{-1}}x=\theta $.
The integral becomes \[-\theta \cot \theta +\log \left| \sin \theta \right|+c=\dfrac{-{{\tan }^{-1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c\]
The integral form of the equation $\dfrac{\arctan x}{{{x}^{2}}}$ is \[\dfrac{-{{\tan }^{-
1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c\].
Note: The solution of the differential equation is the equation of a logarithmic function. The first order differentiation of \[\dfrac{-{{\tan }^{-1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c\] gives the slope for a certain point which is equal to $\dfrac{dy}{dx}=\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}$.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Sketch the electric field lines in case of an electric class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

