Initial concentration of reactant for \[{n^{th}}\]order reaction is '\[a\]'. Which of the following relations is correct about \[{t_{1/2}}\] of the reaction?
(A)\[\;ln\;{t_{1/2}} = ln\left( {constant} \right) - \left( {n - 1} \right)lo{g_{e}}a\]
(B)\[\;ln\;{t_{1/2}} = ln\;n + ln\left( {constant} \right) - ln\;a\]
(C)\[{t_{1/2}}ln\;n = ln\left( {constant} \right) + ln\;{a_0}\]
(D)\[ln\;\;{t_{1/2}} = n\;\;ln\;\;{a_0}\]
Answer
Verified
437.4k+ views
Hint: The convergences of reactants and the pace of a reaction with these fixations, we will view from the outset and second request reactions just as half-life. For a Pseudo-\[{n^{th}}\]-Order Reaction, the reaction rate consistent \[k\] is supplanted by the apparent reaction rate steady \[k'\].
Complete step by step answer:
If the reaction isn't worked out explicitly to show an estimation of \[{\nu _A}\], the worth is thought to be \[1\] and doesn't appear in these conditions.
One approach to determine the request \[n\] and to get an estimated incentive for \[k\] or \[k'\], is with the strategy for half-lives. The half-life \[{t_{1/2}}\]is characterized as the time needed for the initial fixation to be divided: \[{\left[ A \right]_{{t_{1/2}}}}{\text{ }} = {\text{ }}{\left[ A \right]_t} = 0/2\]
This shows that there is an overall relationship for all estimations of \[n\] (counting \[n{\text{ }} = {\text{ }}1\]) between the initial focus and the half-life for a reaction concentrated with various initial fixations at a similar temperature: \[\frac{{{t_{1/2}}}}{{{{\left[ A \right]}_t}}} = {0^{n{\text{ }} - {\text{ }}1}}{\text{ }} = {\text{ }}constant\].
On the off chance that the reaction is First-Order, the half-life won't change with fixation.
On the off chance that the request is more noteworthy than one, the half-life will diminish as the initial focus is expanded.
In the event that the request is short of what one, the half-life will increment as the initial fixation is expanded.
The request for the reaction (\[n\]) might be found by assurance of the half-lives for a reaction learned at two initial focuses. On the off chance that the subsequent focus is equivalent to multiple times the first: \[\frac{{{{\left( {{t_{1/2}}} \right)}_1}}}{{{{\left( {{t_{1/2}}} \right)}_2}}} = {\text{ }}{10^{n{\text{ }} - {\text{ }}1}}\].
Whenever n has been determined, \[k\] or \[k'\] can be determined from the relationship above,
\[\frac{{\left( {{2^{n{\text{ }} - {\text{ }}1}}{\text{ }} - {\text{ }}1} \right)}}{{{{\left[ A \right]}_t}}} = {0^{n{\text{ }} - {\text{ }}1}}{\text{ }} = {\text{ }}{\nu _A}^{\left( {n{\text{ }} - {\text{ }}1} \right)}{\text{ }}k{t_{1/2}}\].
So, the required answer is as follows…
\[{t_{1/2}} \propto \frac{{1}}{{{a^{n - 1}}}}\]
\[{t_{1/2}} = k\frac{{1}}{{{a^{n - 1}}}}\]
\[ln\;\;{t_{1/2}} = ln\;\;k - (n - 1)lo{g_e}a\]
Hence, the correct option is (A).
Note:
The best estimations of the reaction rate consistent (\[k\]) can be acquired with information taken in the centre third of the reaction (from\[{\left[ A \right]_t}{\text{ }} = {\text{ }}\left( {\frac{2}{3}} \right){\text{ }}{\left[ A \right]_t} = 0{\text{ }}to{\text{ }}{\left[ A \right]_t}{\text{ }} = {\text{ }}\left( {\frac{1}{3}} \right){\text{ }}{\left[ A \right]_t} = 0\]). Straight Least Squares relapse with \[Y{\text{ }} = {\text{ }}1/{\left[ A \right]_t}^{n{\text{ }} - {\text{ }}1}\]and \[X{\text{ }} = {\text{ }}t\] gives \[{\nu _A}^{\left( {n{\text{ }} - {\text{ }}1} \right)k}\] or \[{\nu _A}^{\left( {n{\text{ }} - {\text{ }}1} \right)k'}\]as the slant.
Complete step by step answer:
If the reaction isn't worked out explicitly to show an estimation of \[{\nu _A}\], the worth is thought to be \[1\] and doesn't appear in these conditions.
One approach to determine the request \[n\] and to get an estimated incentive for \[k\] or \[k'\], is with the strategy for half-lives. The half-life \[{t_{1/2}}\]is characterized as the time needed for the initial fixation to be divided: \[{\left[ A \right]_{{t_{1/2}}}}{\text{ }} = {\text{ }}{\left[ A \right]_t} = 0/2\]
This shows that there is an overall relationship for all estimations of \[n\] (counting \[n{\text{ }} = {\text{ }}1\]) between the initial focus and the half-life for a reaction concentrated with various initial fixations at a similar temperature: \[\frac{{{t_{1/2}}}}{{{{\left[ A \right]}_t}}} = {0^{n{\text{ }} - {\text{ }}1}}{\text{ }} = {\text{ }}constant\].
On the off chance that the reaction is First-Order, the half-life won't change with fixation.
On the off chance that the request is more noteworthy than one, the half-life will diminish as the initial focus is expanded.
In the event that the request is short of what one, the half-life will increment as the initial fixation is expanded.
The request for the reaction (\[n\]) might be found by assurance of the half-lives for a reaction learned at two initial focuses. On the off chance that the subsequent focus is equivalent to multiple times the first: \[\frac{{{{\left( {{t_{1/2}}} \right)}_1}}}{{{{\left( {{t_{1/2}}} \right)}_2}}} = {\text{ }}{10^{n{\text{ }} - {\text{ }}1}}\].
Whenever n has been determined, \[k\] or \[k'\] can be determined from the relationship above,
\[\frac{{\left( {{2^{n{\text{ }} - {\text{ }}1}}{\text{ }} - {\text{ }}1} \right)}}{{{{\left[ A \right]}_t}}} = {0^{n{\text{ }} - {\text{ }}1}}{\text{ }} = {\text{ }}{\nu _A}^{\left( {n{\text{ }} - {\text{ }}1} \right)}{\text{ }}k{t_{1/2}}\].
So, the required answer is as follows…
\[{t_{1/2}} \propto \frac{{1}}{{{a^{n - 1}}}}\]
\[{t_{1/2}} = k\frac{{1}}{{{a^{n - 1}}}}\]
\[ln\;\;{t_{1/2}} = ln\;\;k - (n - 1)lo{g_e}a\]
Hence, the correct option is (A).
Note:
The best estimations of the reaction rate consistent (\[k\]) can be acquired with information taken in the centre third of the reaction (from\[{\left[ A \right]_t}{\text{ }} = {\text{ }}\left( {\frac{2}{3}} \right){\text{ }}{\left[ A \right]_t} = 0{\text{ }}to{\text{ }}{\left[ A \right]_t}{\text{ }} = {\text{ }}\left( {\frac{1}{3}} \right){\text{ }}{\left[ A \right]_t} = 0\]). Straight Least Squares relapse with \[Y{\text{ }} = {\text{ }}1/{\left[ A \right]_t}^{n{\text{ }} - {\text{ }}1}\]and \[X{\text{ }} = {\text{ }}t\] gives \[{\nu _A}^{\left( {n{\text{ }} - {\text{ }}1} \right)k}\] or \[{\nu _A}^{\left( {n{\text{ }} - {\text{ }}1} \right)k'}\]as the slant.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Give 10 examples of unisexual and bisexual flowers
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE