
In $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4(y>0)$ , then $\dfrac{dy}{dx}at\text{ }x=e$ is equal to:
A. $\dfrac{e}{\sqrt{4+{{e}^{2}}}}$
B. $\dfrac{1+2e}{2\sqrt{4+{{e}^{2}}}}$
C. $\dfrac{2e-1}{2\sqrt{4+{{e}^{2}}}}$
D. $\dfrac{1+2e}{\sqrt{4+{{e}^{2}}}}$
Answer
585.6k+ views
Hint: The required expression can be obtained by simply differentiating the given equation; $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4$ with respect to x implicitly i.e. dependent variable appears in the derivative and wise substitution of values at different steps of solution.
Complete step by step answer:
Given equation $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4$ can be differentiated with respect to x implicitly.
$x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4\ldots eq(1)$
On rearranging $eq\left( 1 \right)$we get,
\[{{y}^{2}}={{x}^{2}}-x\ln (\ln x)+4\ldots eq(2)\]
We know differentiate on both side with respect to x. Differentiating above equation need following important formula:
$\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, $\dfrac{d\left( f\left( x \right).g\left( x \right) \right)}{dx}=f'\left( x \right)g\left( x \right)+f\left( x \right)g'\left( x \right)$, $\dfrac{d(f\left( g\left( x \right) \right)}{dx}={f}'\left( g\left( x \right) \right){g}'\left( x \right)$, $\dfrac{d\left( x\ln \left( \ln \left( x \right) \right) \right)}{dx}=\ln \left( \ln \left( x \right) \right)+\dfrac{1}{\ln \left( x \right)}$, $\dfrac{d\left( c \right)}{dx}=0$
$\dfrac{d}{dx}({{y}^{2}})=\dfrac{d}{dx}({{x}^{2}}-x\ln (\ln (x))+4)$
$\dfrac{d}{dx}\left( {{y}^{2}} \right)=\dfrac{d}{dx}\left( {{x}^{2}} \right)-\dfrac{d}{dx}\left[ x\ln (\ln (x)) \right]+\dfrac{d}{dx}\left( 4 \right)$
$2y\dfrac{dy}{dx}=2x-\ln (\ln x)-\dfrac{1}{\ln x}+0$
$\dfrac{dy}{dx}=\dfrac{1}{2y}\left( 2x-\ln (\ln x)-\dfrac{1}{\ln x} \right)\ldots eq(3)$
We can obtain the value of y from the original equation $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4$by substituting the value of $x=e$,
$eln(ln(e))-{{e}^{2}}+{{y}^{2}}=4$
As we know that$\ln (\ln (e))=1,\ln (1)=0$ we get following value of y,
$y=\sqrt{{{e}^{2}}+4}$
At$x=e$, the $eq\left( 3 \right)$gives,
$\dfrac{dy}{dx}=\dfrac{1}{2y}\left( 2e-1 \right)$
$\dfrac{dy}{dx}=\dfrac{2e-1}{2\sqrt{{{e}^{2}}+4}}at\text{ }x=e$
So, the correct answer is “Option C”.
Note: The implicit differentiation must be done properly. The equation $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4$can be implicitly differentiated without rearranging the terms (rearranging is just for simplicity) as given below:
$\dfrac{d}{dx}(x\ln (\ln x)-{{x}^{2}}+{{y}^{2}})=\dfrac{d}{dx}(4)$
$\dfrac{1}{\ln x}+\ln (\ln (x))-2x+2y\dfrac{dy}{dx}=0$
Complete step by step answer:
Given equation $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4$ can be differentiated with respect to x implicitly.
$x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4\ldots eq(1)$
On rearranging $eq\left( 1 \right)$we get,
\[{{y}^{2}}={{x}^{2}}-x\ln (\ln x)+4\ldots eq(2)\]
We know differentiate on both side with respect to x. Differentiating above equation need following important formula:
$\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}}$, $\dfrac{d\left( f\left( x \right).g\left( x \right) \right)}{dx}=f'\left( x \right)g\left( x \right)+f\left( x \right)g'\left( x \right)$, $\dfrac{d(f\left( g\left( x \right) \right)}{dx}={f}'\left( g\left( x \right) \right){g}'\left( x \right)$, $\dfrac{d\left( x\ln \left( \ln \left( x \right) \right) \right)}{dx}=\ln \left( \ln \left( x \right) \right)+\dfrac{1}{\ln \left( x \right)}$, $\dfrac{d\left( c \right)}{dx}=0$
$\dfrac{d}{dx}({{y}^{2}})=\dfrac{d}{dx}({{x}^{2}}-x\ln (\ln (x))+4)$
$\dfrac{d}{dx}\left( {{y}^{2}} \right)=\dfrac{d}{dx}\left( {{x}^{2}} \right)-\dfrac{d}{dx}\left[ x\ln (\ln (x)) \right]+\dfrac{d}{dx}\left( 4 \right)$
$2y\dfrac{dy}{dx}=2x-\ln (\ln x)-\dfrac{1}{\ln x}+0$
$\dfrac{dy}{dx}=\dfrac{1}{2y}\left( 2x-\ln (\ln x)-\dfrac{1}{\ln x} \right)\ldots eq(3)$
We can obtain the value of y from the original equation $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4$by substituting the value of $x=e$,
$eln(ln(e))-{{e}^{2}}+{{y}^{2}}=4$
As we know that$\ln (\ln (e))=1,\ln (1)=0$ we get following value of y,
$y=\sqrt{{{e}^{2}}+4}$
At$x=e$, the $eq\left( 3 \right)$gives,
$\dfrac{dy}{dx}=\dfrac{1}{2y}\left( 2e-1 \right)$
$\dfrac{dy}{dx}=\dfrac{2e-1}{2\sqrt{{{e}^{2}}+4}}at\text{ }x=e$
So, the correct answer is “Option C”.
Note: The implicit differentiation must be done properly. The equation $x\ln (\ln x)-{{x}^{2}}+{{y}^{2}}=4$can be implicitly differentiated without rearranging the terms (rearranging is just for simplicity) as given below:
$\dfrac{d}{dx}(x\ln (\ln x)-{{x}^{2}}+{{y}^{2}})=\dfrac{d}{dx}(4)$
$\dfrac{1}{\ln x}+\ln (\ln (x))-2x+2y\dfrac{dy}{dx}=0$
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

