
In the product of $BA \times B3 = 57A$, what are the respective positional values of B and A?
A. 6, 7
B. 5, 2
C. 7, 4
D. 2, 5
Answer
580.2k+ views
Hint: To solve this question, we will first check the possibility of A value. Then putting the possible value of A in the above equation we will obtain the value of B. After that we will check the error. We can also do this by an alternative method which we will discuss in note.
Complete step-by-step answer:
The given equation is $BA \times B3 = 57A$
Here A is in the unit place of the product side or we can say in the right hand side which means when we will multiply BA with B3, the product of multiplication of the unit place of both the terms of the left hand side must contain A in its unit place.
That means when we will multiply 3 with A, their product value must contain A in unit place.
If we will check the possibility, then two possibilities arrive. i.e. either A=0 or A=5 .
$BA \times B3 = 57A$
As B is in the 10’s place, then expanding the equation we get,
$\left( {10 \times B + A} \right) \times \left( {10 \times B + 3} \right) = \left( {57 \times 10} \right) + A$
$ \Rightarrow \left( {10B + A} \right) \times \left( {10B + 3} \right) = 570 + A$
$ \Rightarrow 100{B^2} + 10(A \times B) + 30B + 3A = 570 + A$
Subtracting A from both sides we get,
$100{B^2} + 10(A \times B) + 30B + 2A = 570$……………..(1)
For A=0
Putting A=0 in equation 1 we get,
$100{B^2} + 30B = 570$
Dividing 10 on each side we get,
$10{B^2} + 3B = 57$………..(2)
No B satisfies this as
$3B = 7$
For A=5
Putting A=5 in equation 1 we get,
$100{B^2} + 80B + 10 = 570$
Subtracting 10 from both side and then dividing both side with 10 we get,
$10{B^2} + 8B = 56$…………….(3)
$ \Rightarrow 5{B^2} + 4B = 28 = 20 + 8$
Hence B=2
Hence the positional value of B and A is 2, 5 respectively.
So, the correct answer is “Option D”.
Note: Checking error : $25 \times 23 = 575$. Error checked.
For step-2, you have to check it by multiplying 3 with 0 to 1.
You can use middle term factorization method or can put the formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ to get the value of B in equation 2 and 3.
You might mistaken the terms of equation in the question i.e. AB is multiplication of A and B, B3 as 3 multiplied with B and 57A as multiplication of 57 and A.
You can also solve it using an alternative method, by checking through options. ( if options are given)
Complete step-by-step answer:
The given equation is $BA \times B3 = 57A$
Here A is in the unit place of the product side or we can say in the right hand side which means when we will multiply BA with B3, the product of multiplication of the unit place of both the terms of the left hand side must contain A in its unit place.
That means when we will multiply 3 with A, their product value must contain A in unit place.
If we will check the possibility, then two possibilities arrive. i.e. either A=0 or A=5 .
$BA \times B3 = 57A$
As B is in the 10’s place, then expanding the equation we get,
$\left( {10 \times B + A} \right) \times \left( {10 \times B + 3} \right) = \left( {57 \times 10} \right) + A$
$ \Rightarrow \left( {10B + A} \right) \times \left( {10B + 3} \right) = 570 + A$
$ \Rightarrow 100{B^2} + 10(A \times B) + 30B + 3A = 570 + A$
Subtracting A from both sides we get,
$100{B^2} + 10(A \times B) + 30B + 2A = 570$……………..(1)
For A=0
Putting A=0 in equation 1 we get,
$100{B^2} + 30B = 570$
Dividing 10 on each side we get,
$10{B^2} + 3B = 57$………..(2)
No B satisfies this as
$3B = 7$
For A=5
Putting A=5 in equation 1 we get,
$100{B^2} + 80B + 10 = 570$
Subtracting 10 from both side and then dividing both side with 10 we get,
$10{B^2} + 8B = 56$…………….(3)
$ \Rightarrow 5{B^2} + 4B = 28 = 20 + 8$
Hence B=2
Hence the positional value of B and A is 2, 5 respectively.
So, the correct answer is “Option D”.
Note: Checking error : $25 \times 23 = 575$. Error checked.
For step-2, you have to check it by multiplying 3 with 0 to 1.
You can use middle term factorization method or can put the formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ to get the value of B in equation 2 and 3.
You might mistaken the terms of equation in the question i.e. AB is multiplication of A and B, B3 as 3 multiplied with B and 57A as multiplication of 57 and A.
You can also solve it using an alternative method, by checking through options. ( if options are given)
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

i What trees does Mr Wonka mention Which tree does class 7 english CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

What was the main occupation of early Aryans of rig class 7 social science CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Welcome speech for Christmas day celebration class 7 english CBSE


