
In the parabola ${{y}^{2}}=4ax$, the locus of middle points of all chords of constant length c is
$\begin{align}
& \left( a \right)\left( 4ax-{{y}^{2}} \right)\left( {{y}^{2}}-4{{a}^{2}} \right)={{a}^{2}}{{c}^{2}} \\
& \left( b \right)\left( 4ax+{{y}^{2}} \right)\left( {{y}^{2}}+4{{a}^{2}} \right)={{a}^{2}}{{c}^{2}} \\
& \left( c \right)\left( 4ax+{{y}^{2}} \right)\left( {{y}^{2}}-4{{a}^{2}} \right)={{a}^{2}}{{c}^{2}} \\
& \left( d \right)\left( 4ax-{{y}^{2}} \right)\left( {{y}^{2}}+4{{a}^{2}} \right)={{a}^{2}}{{c}^{2}} \\
\end{align}$
Answer
598.8k+ views
Hint: To solve the question given above, we will consider that the points making the chords are $P\left( at_{1}^{2},2a{{t}_{1}} \right)\,and\ Q\left( at_{2}^{2},2a{{t}_{2}} \right)$ according to the parametric form we will then consider that R (h, k) is the midpoint of P and Q. Then we will find h and k in terms of ${{a}_{1}},{{t}_{1}}\ and\text{ }{{t}_{2}}.$ Then we will find the distance between P and Q with the help of distance formula and we will equate it to c to get the locus.
Complete step-by-step answer:
The rough sketch of parabola as given in the question is drawn below:
Let the chord of parabola be made by the points P and Q. We can also write ${{x}_{1}}\text{ }and\ {{y}_{1}}\ as\ a{{t}_{1}}\ and\ 2a{{t}_{1}}$ respectively according to the parametric form. Thus, we will get $P\left( at_{1}^{2},2a{{t}_{1}} \right)$. Similarly we can say that $Q\left( at_{2}^{2},2a{{t}_{2}} \right)$. Now, have assumed that R (h, k) is the midpoint of P and Q. Now we will apply the midpoint formula. The midpoint (x, y) of G (a, b) and H (c, d) is given by the formula:
$\begin{align}
& x=\dfrac{a+c}{2} \\
& y=\dfrac{b+d}{2} \\
\end{align}$
Thus, we will get:
\[\begin{align}
& h=\dfrac{at_{1}^{2}+a{{t}^{2}}_{2}}{2} \\
& \Rightarrow 2h=at_{1}^{2}+a{{t}^{2}}_{2} \\
& \Rightarrow \dfrac{2h}{a}=t_{1}^{2}+{{t}^{2}}_{2}.........\left( 1 \right) \\
\end{align}\]
Similarly, \[k=\dfrac{2a{{t}_{1}}+a{{t}_{2}}}{2}\]
$\begin{align}
& \Rightarrow k=a{{t}_{1}}+a{{t}_{2}} \\
& \Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}..........\left( 2 \right) \\
\end{align}$
Now, we will square the equation (2). Thus, we will get:
${{\left( \dfrac{k}{a} \right)}^{2}}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}$
Now, we will apply identity: ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2a{{b}^{2}}$
\[\begin{align}
& \Rightarrow {{\left( \dfrac{k}{a} \right)}^{2}}=t_{1}^{2}+t_{2}^{2}+2{{t}_{1}}{{t}_{2}} \\
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{2}}}-2{{t}_{1}}{{t}_{2}}=t_{1}^{2}+t_{2}^{2}........\left( 3 \right) \\
\end{align}\]
From (1) and (3), we have:
\[\begin{align}
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{2}}}-2{{t}_{1}}{{t}_{2}}=\dfrac{2h}{a} \\
& \Rightarrow 2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a} \\
& \Rightarrow 2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}-2ah}{{{a}^{2}}} \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}-2ah}{2{{a}^{2}}}...........\left( 4 \right) \\
\end{align}\]
Now, we are given that the distance between P and Q is the distance between A (a,b) and B(c,d) is given by:
$\left| AB \right|=\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{^{2}}}}$
Thus, we have:
$c=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
On putting the parametric form of the variable ${{x}_{1}},{{x}_{2}},{{y}_{1}}\text{ }and\text{ }{{y}_{2}}$, we will get:
\[\begin{align}
& \Rightarrow c=\sqrt{{{\left( at_{1}^{2}-at_{2}^{2} \right)}^{2}}+{{\left( 2a{{t}_{1}}-2a{{t}_{2}} \right)}^{2}}} \\
& \Rightarrow c=\sqrt{{{a}^{2}}{{\left( t_{1}^{2}-t_{2}^{2} \right)}^{2}}+{{a}^{2}}{{\left( 2{{t}_{1}}-2{{t}_{2}} \right)}^{2}}} \\
& \Rightarrow c=a\sqrt{{{\left( t_{1}^{2}-t_{2}^{2} \right)}^{2}}+{{\left( 2{{t}_{1}}-2{{t}_{2}} \right)}^{2}}} \\
\end{align}\]
Now, we will square both sides. Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}={{\left( t_{1}^{2}-t_{2}^{2} \right)}^{2}}+{{\left( 2{{t}_{1}}-2{{t}_{2}} \right)}^{2}}.$
Now, we will use the identity: ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right).$ Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}={{\left[ \left( {{t}_{1}}+{{t}_{2}} \right)\left( {{t}_{1}}-{{t}_{2}} \right) \right]}^{2}}+4\left[ {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}} \right]$
Now, taking ${{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}$ common from the right hand side. Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}={{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}\left[ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+4 \right]$
Now, we will apply identity: ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.$ Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ t_{1}^{2}+t_{2}^{2}+2{{t}_{1}}{{t}_{2}} \right]\left[ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+4 \right]..........\left( 5 \right)$
Now, we will put the values of \[\left( t_{1}^{2}+t_{2}^{2} \right),\left( {{t}_{1}}{{t}_{2}} \right)\text{ }and\ \left( {{t}_{1}}+{{t}_{2}} \right)\] from (1),(4) and (2) respectively into (5). Thus, after doing this, we will get:
$\begin{align}
& \Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ \dfrac{2h}{a}-2\left( \dfrac{{{k}^{2}}-2ah}{2{{a}^{2}}} \right) \right]\left[ \dfrac{{{k}^{2}}}{{{a}^{2}}}+4 \right] \\
& \Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ \dfrac{2ha-{{k}^{2}}+2ah}{{{a}^{2}}} \right]\left[ \dfrac{{{k}^{2}}+4{{a}^{2}}}{{{a}^{2}}} \right] \\
& \Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ \dfrac{\left( 4ah-{{k}^{2}} \right)\left( {{k}^{2}}+4{{a}^{2}} \right)}{{{a}^{2}}\times {{a}^{2}}} \right] \\
& \Rightarrow {{a}^{2}}{{c}^{2}}=\left( 4ah-{{k}^{2}} \right)\left( {{k}^{2}}+4{{a}^{2}} \right) \\
\end{align}$
On putting x in place of h and y in place of k, we will get: $\left( 4ax-{{y}^{2}} \right)\left( {{y}^{2}}+4{{a}^{2}} \right)={{a}^{2}}{{c}^{2}}$
Hence option (d) is correct.
Note: Instead of taking the points on the chord as the parametric form of points, we can also take points as shown. The equation of parabola is: ${{y}^{2}}=4ax.$ The points P and Q will satisfy it. Thus,
${{y}^{2}}=4a{{x}_{1}}\Rightarrow {{x}_{1}}=\dfrac{y_{1}^{2}}{4{{a}_{1}}}$
Similarly ${{x}_{2}}=\dfrac{y_{2}^{2}}{4{{a}_{2}}}$
Now, \[h=\dfrac{\dfrac{y_{1}^{2}}{4{{a}_{1}}}+\dfrac{y_{2}^{2}}{4{{a}_{2}}}}{2}\]
$\Rightarrow 8{{a}_{1}}h=y_{1}^{2}+y_{2}^{2}.........\left( 1 \right)$
Similarly, \[k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
$\Rightarrow 2k={{y}_{1}}+{{y}_{2}}........\left( 2 \right)$
When we will put these values in the distance formula and equate it to c, we will get the same result.
Complete step-by-step answer:
The rough sketch of parabola as given in the question is drawn below:
Let the chord of parabola be made by the points P and Q. We can also write ${{x}_{1}}\text{ }and\ {{y}_{1}}\ as\ a{{t}_{1}}\ and\ 2a{{t}_{1}}$ respectively according to the parametric form. Thus, we will get $P\left( at_{1}^{2},2a{{t}_{1}} \right)$. Similarly we can say that $Q\left( at_{2}^{2},2a{{t}_{2}} \right)$. Now, have assumed that R (h, k) is the midpoint of P and Q. Now we will apply the midpoint formula. The midpoint (x, y) of G (a, b) and H (c, d) is given by the formula:
$\begin{align}
& x=\dfrac{a+c}{2} \\
& y=\dfrac{b+d}{2} \\
\end{align}$
Thus, we will get:
\[\begin{align}
& h=\dfrac{at_{1}^{2}+a{{t}^{2}}_{2}}{2} \\
& \Rightarrow 2h=at_{1}^{2}+a{{t}^{2}}_{2} \\
& \Rightarrow \dfrac{2h}{a}=t_{1}^{2}+{{t}^{2}}_{2}.........\left( 1 \right) \\
\end{align}\]
Similarly, \[k=\dfrac{2a{{t}_{1}}+a{{t}_{2}}}{2}\]
$\begin{align}
& \Rightarrow k=a{{t}_{1}}+a{{t}_{2}} \\
& \Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}..........\left( 2 \right) \\
\end{align}$
Now, we will square the equation (2). Thus, we will get:
${{\left( \dfrac{k}{a} \right)}^{2}}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}$
Now, we will apply identity: ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2a{{b}^{2}}$
\[\begin{align}
& \Rightarrow {{\left( \dfrac{k}{a} \right)}^{2}}=t_{1}^{2}+t_{2}^{2}+2{{t}_{1}}{{t}_{2}} \\
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{2}}}-2{{t}_{1}}{{t}_{2}}=t_{1}^{2}+t_{2}^{2}........\left( 3 \right) \\
\end{align}\]
From (1) and (3), we have:
\[\begin{align}
& \Rightarrow \dfrac{{{k}^{2}}}{{{a}^{2}}}-2{{t}_{1}}{{t}_{2}}=\dfrac{2h}{a} \\
& \Rightarrow 2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a} \\
& \Rightarrow 2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}-2ah}{{{a}^{2}}} \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}-2ah}{2{{a}^{2}}}...........\left( 4 \right) \\
\end{align}\]
Now, we are given that the distance between P and Q is the distance between A (a,b) and B(c,d) is given by:
$\left| AB \right|=\sqrt{{{\left( a-c \right)}^{2}}+{{\left( b-d \right)}^{^{2}}}}$
Thus, we have:
$c=\sqrt{{{\left( {{x}_{1}}-{{x}_{2}} \right)}^{2}}+{{\left( {{y}_{1}}-{{y}_{2}} \right)}^{2}}}$
On putting the parametric form of the variable ${{x}_{1}},{{x}_{2}},{{y}_{1}}\text{ }and\text{ }{{y}_{2}}$, we will get:
\[\begin{align}
& \Rightarrow c=\sqrt{{{\left( at_{1}^{2}-at_{2}^{2} \right)}^{2}}+{{\left( 2a{{t}_{1}}-2a{{t}_{2}} \right)}^{2}}} \\
& \Rightarrow c=\sqrt{{{a}^{2}}{{\left( t_{1}^{2}-t_{2}^{2} \right)}^{2}}+{{a}^{2}}{{\left( 2{{t}_{1}}-2{{t}_{2}} \right)}^{2}}} \\
& \Rightarrow c=a\sqrt{{{\left( t_{1}^{2}-t_{2}^{2} \right)}^{2}}+{{\left( 2{{t}_{1}}-2{{t}_{2}} \right)}^{2}}} \\
\end{align}\]
Now, we will square both sides. Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}={{\left( t_{1}^{2}-t_{2}^{2} \right)}^{2}}+{{\left( 2{{t}_{1}}-2{{t}_{2}} \right)}^{2}}.$
Now, we will use the identity: ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right).$ Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}={{\left[ \left( {{t}_{1}}+{{t}_{2}} \right)\left( {{t}_{1}}-{{t}_{2}} \right) \right]}^{2}}+4\left[ {{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}} \right]$
Now, taking ${{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}$ common from the right hand side. Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}={{\left( {{t}_{1}}-{{t}_{2}} \right)}^{2}}\left[ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+4 \right]$
Now, we will apply identity: ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.$ Thus, we will get:
$\Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ t_{1}^{2}+t_{2}^{2}+2{{t}_{1}}{{t}_{2}} \right]\left[ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}+4 \right]..........\left( 5 \right)$
Now, we will put the values of \[\left( t_{1}^{2}+t_{2}^{2} \right),\left( {{t}_{1}}{{t}_{2}} \right)\text{ }and\ \left( {{t}_{1}}+{{t}_{2}} \right)\] from (1),(4) and (2) respectively into (5). Thus, after doing this, we will get:
$\begin{align}
& \Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ \dfrac{2h}{a}-2\left( \dfrac{{{k}^{2}}-2ah}{2{{a}^{2}}} \right) \right]\left[ \dfrac{{{k}^{2}}}{{{a}^{2}}}+4 \right] \\
& \Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ \dfrac{2ha-{{k}^{2}}+2ah}{{{a}^{2}}} \right]\left[ \dfrac{{{k}^{2}}+4{{a}^{2}}}{{{a}^{2}}} \right] \\
& \Rightarrow \dfrac{{{c}^{2}}}{{{a}^{2}}}=\left[ \dfrac{\left( 4ah-{{k}^{2}} \right)\left( {{k}^{2}}+4{{a}^{2}} \right)}{{{a}^{2}}\times {{a}^{2}}} \right] \\
& \Rightarrow {{a}^{2}}{{c}^{2}}=\left( 4ah-{{k}^{2}} \right)\left( {{k}^{2}}+4{{a}^{2}} \right) \\
\end{align}$
On putting x in place of h and y in place of k, we will get: $\left( 4ax-{{y}^{2}} \right)\left( {{y}^{2}}+4{{a}^{2}} \right)={{a}^{2}}{{c}^{2}}$
Hence option (d) is correct.
Note: Instead of taking the points on the chord as the parametric form of points, we can also take points as shown. The equation of parabola is: ${{y}^{2}}=4ax.$ The points P and Q will satisfy it. Thus,
${{y}^{2}}=4a{{x}_{1}}\Rightarrow {{x}_{1}}=\dfrac{y_{1}^{2}}{4{{a}_{1}}}$
Similarly ${{x}_{2}}=\dfrac{y_{2}^{2}}{4{{a}_{2}}}$
Now, \[h=\dfrac{\dfrac{y_{1}^{2}}{4{{a}_{1}}}+\dfrac{y_{2}^{2}}{4{{a}_{2}}}}{2}\]
$\Rightarrow 8{{a}_{1}}h=y_{1}^{2}+y_{2}^{2}.........\left( 1 \right)$
Similarly, \[k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
$\Rightarrow 2k={{y}_{1}}+{{y}_{2}}........\left( 2 \right)$
When we will put these values in the distance formula and equate it to c, we will get the same result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

