Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# In the given number line, point M represents a fractional number. Find the number.

Last updated date: 09th Sep 2024
Total views: 418.5k
Views today: 5.18k
Verified
418.5k+ views
Hint: We first need to find the difference between normal scaling and the one we have been provided with. Then we try to figure out the number of dividers and the distances between any two bigger units of 1 unit. We find out the distance of smaller scales. Then we add the distance of mark M from 1 to find the fractional number.

So, a total 12 small spaces are adding up to create the distance of 1 unit. Using a unitary system, we can tell that 1 small space is going to be the distance of $\dfrac{1}{12}$ unit.
Between the mark 1 and point M, there are 2 spaces which have a total distance of $2\times \dfrac{1}{12}=\dfrac{1}{6}$ unit.
So, the mark of M is the value of $1+\dfrac{1}{6}=\dfrac{7}{6}$ unit.
The mark M represents the fractional number $\dfrac{7}{6}$.