
In the given figure, $\angle AOB=90{}^\circ $ and $\angle ABC=30{}^\circ $, Then $\angle CAD=?$
(a) $30{}^\circ $
(b) $45{}^\circ $
(c) $60{}^\circ $
(d) $90{}^\circ $

Answer
509.1k+ views
Hint: In triangle OAB, $\angle OAB=\angle OBA$, calculate $\angle OBA$. Assume point “M” as shown in the diagram. $\angle MBA=30{}^\circ $(given). Find $\angle MBC$ by subtracting $\angle MBA$ from $\angle OBA$. As OC=OB=r. So, \[\angle OCM=\angle OBM\]. Now calculate \[\angle COB\]and then calculate $\angle CAO$ by using the fact that “angle subtended by a chord at the center of a circle is double of the angle subtended by the chord at any point lying on the circle.”
Complete step-by-step solution:
All the points are specified. Assume point of intersection of OA and BC on “M”.
In $\vartriangle OAB,\,OA=OB$=radius of the circle.
We know that if two sides is a triangle are equal, their corresponding angles will also be equal.
i.e. $\angle OAB=\angle OBA$
let \[\angle OAB=\angle OBA=x\]
By angle sum property of a circle, sum of the angles of a $\vartriangle $ is $180{}^\circ $.
In $\vartriangle $OAB-
$\begin{align}
& \angle OAB+\angle OBA+\angle AOB=180{}^\circ \\
& \Rightarrow x+x+90{}^\circ =180{}^\circ \\
& \Rightarrow 2x=180{}^\circ -90{}^\circ \\
& \Rightarrow 2x=90{}^\circ \\
& \Rightarrow x=45{}^\circ \\
\end{align}$
So, $\angle OBA=\angle OAB=45{}^\circ $
From diagram,
$\begin{align}
& \angle OBA=\angle OBM+\angle MBA \\
& \Rightarrow 45{}^\circ =\angle OBM+30{}^\circ \\
& \Rightarrow \angle OBM=45{}^\circ -30{}^\circ \\
& \Rightarrow \angle OBM=15{}^\circ \\
\end{align}$
In $\vartriangle OCB$
OC=OB (both are radius of the circle)
So, corresponding angles will also be equal in the $\vartriangle $.
So, $\angle OCB=\angle OBC$
We have calculated above that $\angle OBM=15{}^\circ $
$\Rightarrow \angle OBC=15{}^\circ $ (see diagram)
So, $\Rightarrow \angle OBC=\angle OBM=15{}^\circ $
Now, in $\vartriangle $ OBM-
$\begin{align}
& \angle MOB=90{}^\circ \,(given) \\
& \angle OBM=15{}^\circ \,(calculated\,above) \\
\end{align}$
By angle sum property of triangle-
$\begin{align}
& \angle MOB+\angle OBM+\angle OMB=180{}^\circ \\
& 90{}^\circ +15{}^\circ +\angle OMB=180{}^\circ \\
& \angle OMB=180{}^\circ -(90{}^\circ +15{}^\circ ) \\
& \angle OMB=75{}^\circ \\
\end{align}$
By linear property straight lines on line BC-
$\begin{align}
& \angle CMO+\angle OMB=180{}^\circ \\
& \angle CMO+75{}^\circ =180{}^\circ \\
& \left[ \angle OMB=75{}^\circ ,\,calculated\,above \right] \\
& \angle CMO=180{}^\circ -75{}^\circ \\
& \angle CMO=105{}^\circ \\
\end{align}$
Now in $\vartriangle OCM-$
$\begin{align}
& \angle OCM=15{}^\circ (calculated\,above) \\
& \angle OMC=105{}^\circ (calculated\,above) \\
\end{align}$
By angle sum property of a $\vartriangle $
$\begin{align}
& \angle OCM+\angle OMC+\angle COM=180{}^\circ \\
& \Rightarrow 15{}^\circ +105{}^\circ +\angle COM=180{}^\circ \\
& \Rightarrow 120{}^\circ +\angle COM=180{}^\circ \\
& \Rightarrow \angle COM=180{}^\circ -120{}^\circ \\
& \Rightarrow \angle COM=60{}^\circ \\
\end{align}$
From the diagram, we can see that
$\begin{align}
& \angle COB=\angle COM+\angle MOB \\
& \angle COM=60{}^\circ \,(calcullated\,above) \\
& \angle MOB=90{}^\circ \,(given) \\
& So,\angle COB=60{}^\circ +90{}^\circ \\
& \Rightarrow \angle COB=150{}^\circ \\
\end{align}$
We know that the angle subtended by a chord of a circle at its center is double the angle subtended by the chord at any point on its circumference.
We can see the diagram that chord BC subtends $\angle COB$ at the center of the circle and angle $\angle CAB$ at the circumference.
So,
$\begin{align}
& \angle COB=2\times \angle CAB \\
& \Rightarrow 150{}^\circ =2\times \angle CAB\,\,\,\left[ \angle COB=150{}^\circ \,as\,calculated\,above \right] \\
& \Rightarrow \angle CAB=\dfrac{150{}^\circ }{2}=75{}^\circ \\
\end{align}$
From the diagram, we can see that $\angle CAB=\angle CAD+\angle OAB$
$\begin{align}
& \angle CAB=75{}^\circ \,(calculated\,above) \\
& \angle OAB=45{}^\circ \,(calculated\,above) \\
\end{align}$
So,
$\begin{align}
& 75{}^\circ =\angle CAO+45{}^\circ \\
& \Rightarrow \angle CAD=75{}^\circ -45{}^\circ =30{}^\circ \\
\end{align}$
Hence the required value of $\angle CAD$ will be $30{}^\circ $ and option (a) is the correct answer.
Note: We have used a theorem in the solution that the angle subtended by a chord at the center is double of the angle subtended by it on its circumference.
Given chord PQ of a circle subtending POQ at the centre O and PAQ at a point A n the circumference of the circle.
To prove:
$\angle POQ=2\angle PAQ$
Join AM such that AM is bisecting $\angle PAQ$
Let, $\angle PAD=\angle DAQ=\theta $
In $\vartriangle ADQ-OA=DQ\,(Both\,equal\,to\,radius)$
So, corresponding angles will also be equal.
i.e. $\angle OAQ=\angle OQA$
So, $\angle OQA=\theta $
Now by exterior angle sum property- (in $\vartriangle AOQ-$
$\begin{align}
& \angle OAQ+\angle DQA=\angle MOQ \\
& \Rightarrow \theta +\theta =\angle MOq \\
& \Rightarrow \angle MOQ=2\theta \\
\end{align}$
Similarly, in $\vartriangle APO-$ (exterior angles property)
$\begin{align}
& \angle POM=2\theta \\
& Noq,\angle POQ=2\theta +2\theta =4\theta \,(See\,diagram) \\
& and\,\angle PAQ=\theta +\theta =2 \\
\end{align}$
Hence, $\angle POQ=2\angle PAQ$
Complete step-by-step solution:

All the points are specified. Assume point of intersection of OA and BC on “M”.
In $\vartriangle OAB,\,OA=OB$=radius of the circle.
We know that if two sides is a triangle are equal, their corresponding angles will also be equal.
i.e. $\angle OAB=\angle OBA$
let \[\angle OAB=\angle OBA=x\]
By angle sum property of a circle, sum of the angles of a $\vartriangle $ is $180{}^\circ $.
In $\vartriangle $OAB-
$\begin{align}
& \angle OAB+\angle OBA+\angle AOB=180{}^\circ \\
& \Rightarrow x+x+90{}^\circ =180{}^\circ \\
& \Rightarrow 2x=180{}^\circ -90{}^\circ \\
& \Rightarrow 2x=90{}^\circ \\
& \Rightarrow x=45{}^\circ \\
\end{align}$
So, $\angle OBA=\angle OAB=45{}^\circ $
From diagram,
$\begin{align}
& \angle OBA=\angle OBM+\angle MBA \\
& \Rightarrow 45{}^\circ =\angle OBM+30{}^\circ \\
& \Rightarrow \angle OBM=45{}^\circ -30{}^\circ \\
& \Rightarrow \angle OBM=15{}^\circ \\
\end{align}$
In $\vartriangle OCB$
OC=OB (both are radius of the circle)
So, corresponding angles will also be equal in the $\vartriangle $.
So, $\angle OCB=\angle OBC$
We have calculated above that $\angle OBM=15{}^\circ $
$\Rightarrow \angle OBC=15{}^\circ $ (see diagram)
So, $\Rightarrow \angle OBC=\angle OBM=15{}^\circ $
Now, in $\vartriangle $ OBM-
$\begin{align}
& \angle MOB=90{}^\circ \,(given) \\
& \angle OBM=15{}^\circ \,(calculated\,above) \\
\end{align}$
By angle sum property of triangle-
$\begin{align}
& \angle MOB+\angle OBM+\angle OMB=180{}^\circ \\
& 90{}^\circ +15{}^\circ +\angle OMB=180{}^\circ \\
& \angle OMB=180{}^\circ -(90{}^\circ +15{}^\circ ) \\
& \angle OMB=75{}^\circ \\
\end{align}$
By linear property straight lines on line BC-
$\begin{align}
& \angle CMO+\angle OMB=180{}^\circ \\
& \angle CMO+75{}^\circ =180{}^\circ \\
& \left[ \angle OMB=75{}^\circ ,\,calculated\,above \right] \\
& \angle CMO=180{}^\circ -75{}^\circ \\
& \angle CMO=105{}^\circ \\
\end{align}$
Now in $\vartriangle OCM-$
$\begin{align}
& \angle OCM=15{}^\circ (calculated\,above) \\
& \angle OMC=105{}^\circ (calculated\,above) \\
\end{align}$
By angle sum property of a $\vartriangle $
$\begin{align}
& \angle OCM+\angle OMC+\angle COM=180{}^\circ \\
& \Rightarrow 15{}^\circ +105{}^\circ +\angle COM=180{}^\circ \\
& \Rightarrow 120{}^\circ +\angle COM=180{}^\circ \\
& \Rightarrow \angle COM=180{}^\circ -120{}^\circ \\
& \Rightarrow \angle COM=60{}^\circ \\
\end{align}$
From the diagram, we can see that
$\begin{align}
& \angle COB=\angle COM+\angle MOB \\
& \angle COM=60{}^\circ \,(calcullated\,above) \\
& \angle MOB=90{}^\circ \,(given) \\
& So,\angle COB=60{}^\circ +90{}^\circ \\
& \Rightarrow \angle COB=150{}^\circ \\
\end{align}$
We know that the angle subtended by a chord of a circle at its center is double the angle subtended by the chord at any point on its circumference.
We can see the diagram that chord BC subtends $\angle COB$ at the center of the circle and angle $\angle CAB$ at the circumference.
So,
$\begin{align}
& \angle COB=2\times \angle CAB \\
& \Rightarrow 150{}^\circ =2\times \angle CAB\,\,\,\left[ \angle COB=150{}^\circ \,as\,calculated\,above \right] \\
& \Rightarrow \angle CAB=\dfrac{150{}^\circ }{2}=75{}^\circ \\
\end{align}$
From the diagram, we can see that $\angle CAB=\angle CAD+\angle OAB$
$\begin{align}
& \angle CAB=75{}^\circ \,(calculated\,above) \\
& \angle OAB=45{}^\circ \,(calculated\,above) \\
\end{align}$
So,
$\begin{align}
& 75{}^\circ =\angle CAO+45{}^\circ \\
& \Rightarrow \angle CAD=75{}^\circ -45{}^\circ =30{}^\circ \\
\end{align}$
Hence the required value of $\angle CAD$ will be $30{}^\circ $ and option (a) is the correct answer.
Note: We have used a theorem in the solution that the angle subtended by a chord at the center is double of the angle subtended by it on its circumference.

Given chord PQ of a circle subtending POQ at the centre O and PAQ at a point A n the circumference of the circle.
To prove:
$\angle POQ=2\angle PAQ$
Join AM such that AM is bisecting $\angle PAQ$
Let, $\angle PAD=\angle DAQ=\theta $
In $\vartriangle ADQ-OA=DQ\,(Both\,equal\,to\,radius)$
So, corresponding angles will also be equal.
i.e. $\angle OAQ=\angle OQA$
So, $\angle OQA=\theta $
Now by exterior angle sum property- (in $\vartriangle AOQ-$
$\begin{align}
& \angle OAQ+\angle DQA=\angle MOQ \\
& \Rightarrow \theta +\theta =\angle MOq \\
& \Rightarrow \angle MOQ=2\theta \\
\end{align}$
Similarly, in $\vartriangle APO-$ (exterior angles property)
$\begin{align}
& \angle POM=2\theta \\
& Noq,\angle POQ=2\theta +2\theta =4\theta \,(See\,diagram) \\
& and\,\angle PAQ=\theta +\theta =2 \\
\end{align}$
Hence, $\angle POQ=2\angle PAQ$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
