Answer
Verified
430.8k+ views
Hint: To find the value of PR, we will first consider the $\Delta PQS$ . Since the triangle is a right-angled triangle, we will use the Pythagoras theorem. From this, we will get the side PS. Hence, $RS=RQ+QS$ . Now, consider triangle PRS and apply Pythagoras theorem. Through this, we will get side PR.
Complete step-by-step solution
We have to find the value of PR. It is given that $\angle PSR={{90}^{\circ }}$ . Hence the triangles PRS and PQS are right-angled triangles.
Let us first consider the $\Delta PQS$. The sides PQ and QS are given. So we will use the Pythagoras theorem to find the side PS.
Pythagoras theorem states that the square of the largest side of a triangle will be equal to the sum of squares of the other two sides.
$\Rightarrow P{{Q}^{2}}=P{{S}^{2}}+Q{{S}^{2}}...(i)$
It is given that $PQ=10cm,QS=6cm\text{ }$
Let us substitute these values in equation (i). We will get
${{10}^{2}}=P{{S}^{2}}+{{6}^{2}}$
We can write this as
$P{{S}^{2}}=100-36=64$
Now, let us take the square root.
$PS=8cm$
Now, let us consider the triangle PRS. We can apply Pythagoras theorem here.
$\Rightarrow P{{R}^{2}}=R{{S}^{2}}+P{{S}^{2}}...(ii)$
It is given that $QS=6cm\text{ and }RQ=9cm.$
Hence, $RS=RQ+QS$
Let us now substitute the values. We will get
$RS=6+9=15cm$
Now, we can substitute these values in equation (ii).
We will get
$P{{R}^{2}}={{15}^{2}}+{{8}^{2}}$
Now let us solve this. We will get
$P{{R}^{2}}=225+64=289$
Let us take the square root. We get
$PR=17cm$
Hence, the value of $PR=17cm$.
Note: Pythagoras theorem must be thorough to solve these types of problems. Pythagoras theorem can be applied only when a triangle is a right-angled triangle. You may make an error in the Pythagoras theorem as $P{{Q}^{2}}=P{{S}^{2}}-Q{{S}^{2}}$. In the right-angle triangle, the largest side to be the hypotenuse.
Complete step-by-step solution
We have to find the value of PR. It is given that $\angle PSR={{90}^{\circ }}$ . Hence the triangles PRS and PQS are right-angled triangles.
Let us first consider the $\Delta PQS$. The sides PQ and QS are given. So we will use the Pythagoras theorem to find the side PS.
Pythagoras theorem states that the square of the largest side of a triangle will be equal to the sum of squares of the other two sides.
$\Rightarrow P{{Q}^{2}}=P{{S}^{2}}+Q{{S}^{2}}...(i)$
It is given that $PQ=10cm,QS=6cm\text{ }$
Let us substitute these values in equation (i). We will get
${{10}^{2}}=P{{S}^{2}}+{{6}^{2}}$
We can write this as
$P{{S}^{2}}=100-36=64$
Now, let us take the square root.
$PS=8cm$
Now, let us consider the triangle PRS. We can apply Pythagoras theorem here.
$\Rightarrow P{{R}^{2}}=R{{S}^{2}}+P{{S}^{2}}...(ii)$
It is given that $QS=6cm\text{ and }RQ=9cm.$
Hence, $RS=RQ+QS$
Let us now substitute the values. We will get
$RS=6+9=15cm$
Now, we can substitute these values in equation (ii).
We will get
$P{{R}^{2}}={{15}^{2}}+{{8}^{2}}$
Now let us solve this. We will get
$P{{R}^{2}}=225+64=289$
Let us take the square root. We get
$PR=17cm$
Hence, the value of $PR=17cm$.
Note: Pythagoras theorem must be thorough to solve these types of problems. Pythagoras theorem can be applied only when a triangle is a right-angled triangle. You may make an error in the Pythagoras theorem as $P{{Q}^{2}}=P{{S}^{2}}-Q{{S}^{2}}$. In the right-angle triangle, the largest side to be the hypotenuse.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE