Answer
Verified
447.3k+ views
Hint: Use formula for impedance in series LCR circuit. Calculate resonance frequency using impedance formula. This frequency is independent of resistance. Then, use the formula for current in LCR series and let frequency be equal to zero. Thus, current becomes zero.
Formula used:
$Z\quad =\quad R\quad +\quad j\omega L\quad -\dfrac { j }{ \omega C }$
${ \omega }_{ 0 }=\dfrac { 1 }{ \sqrt { LC } }$
$I\quad =\quad \dfrac { V }{ \sqrt { { R }^{ 2 }+\quad { \left( \omega L\quad -\dfrac { 1 }{ \omega C } \right) }^{ 2 } } }$
Complete answer:
When L, R and C are connected in series, impedance is given by,
$Z\quad =\quad R\quad +\quad j\omega L\quad -\dfrac { j }{ \omega C }$ …(1)
Resonant frequency in series LCR circuit is given by,
${ \omega }_{ 0 }=\dfrac { 1 }{ \sqrt { LC } }$
Substituting values in above equation we get,
${ \omega }_{ 0 }=\dfrac { 1 }{ \sqrt { { 10 }^{ -6 }\times { 10 }^{ -6 } } }$
$\therefore \quad { \omega }_{ 0 }=\sqrt { { 10 }^{ -12 } }$
$\therefore \quad { \omega }_{ 0 }=\quad { 10 }^{ 6 }rad$
This obtained value is independent of R.
Now, current I in series LCR circuit is given by,
$I\quad =\quad \dfrac { V }{ \sqrt { { R }^{ 2 }+\quad { \left( \omega L\quad -\dfrac { 1 }{ \omega C } \right) }^{ 2 } } }$
At $\omega \sim 0$, above equations become,
$I\quad =\quad \cfrac { V }{ \infty }$
$\therefore \quad I\quad =\quad 0$
Thus, the current flowing through the circuit becomes zero.
At $\omega \sim 0$ the current flowing through the circuit becomes nearly zero and the frequency at which the current will be in phase with the voltage is independent of R respectively.
So, the correct answer is “Option B and D”.
Note:
When current is in phase with voltage, Impedance (I) becomes equal to resistance (R).
Therefore, the equation. (1) becomes,
$j\omega L\quad =\quad \dfrac { j }{ \omega C }$
$\therefore \quad { \omega }^{ 2 }=\quad \dfrac { 1 }{ LC }$
$\therefore \quad { \omega }=\quad \dfrac { 1 }{ \sqrt { LC } }$
Formula used:
$Z\quad =\quad R\quad +\quad j\omega L\quad -\dfrac { j }{ \omega C }$
${ \omega }_{ 0 }=\dfrac { 1 }{ \sqrt { LC } }$
$I\quad =\quad \dfrac { V }{ \sqrt { { R }^{ 2 }+\quad { \left( \omega L\quad -\dfrac { 1 }{ \omega C } \right) }^{ 2 } } }$
Complete answer:
When L, R and C are connected in series, impedance is given by,
$Z\quad =\quad R\quad +\quad j\omega L\quad -\dfrac { j }{ \omega C }$ …(1)
Resonant frequency in series LCR circuit is given by,
${ \omega }_{ 0 }=\dfrac { 1 }{ \sqrt { LC } }$
Substituting values in above equation we get,
${ \omega }_{ 0 }=\dfrac { 1 }{ \sqrt { { 10 }^{ -6 }\times { 10 }^{ -6 } } }$
$\therefore \quad { \omega }_{ 0 }=\sqrt { { 10 }^{ -12 } }$
$\therefore \quad { \omega }_{ 0 }=\quad { 10 }^{ 6 }rad$
This obtained value is independent of R.
Now, current I in series LCR circuit is given by,
$I\quad =\quad \dfrac { V }{ \sqrt { { R }^{ 2 }+\quad { \left( \omega L\quad -\dfrac { 1 }{ \omega C } \right) }^{ 2 } } }$
At $\omega \sim 0$, above equations become,
$I\quad =\quad \cfrac { V }{ \infty }$
$\therefore \quad I\quad =\quad 0$
Thus, the current flowing through the circuit becomes zero.
At $\omega \sim 0$ the current flowing through the circuit becomes nearly zero and the frequency at which the current will be in phase with the voltage is independent of R respectively.
So, the correct answer is “Option B and D”.
Note:
When current is in phase with voltage, Impedance (I) becomes equal to resistance (R).
Therefore, the equation. (1) becomes,
$j\omega L\quad =\quad \dfrac { j }{ \omega C }$
$\therefore \quad { \omega }^{ 2 }=\quad \dfrac { 1 }{ LC }$
$\therefore \quad { \omega }=\quad \dfrac { 1 }{ \sqrt { LC } }$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE