
In $\Delta ABC$, right-angled at $B$, $AB = 24{\text{ cm, }}BC = 7{\text{ cm}}$. Determine:
(i) $\sin A,{\text{ }}\cos A{\text{ }}$
(ii) $\sin C,{\text{ }}\cos C{\text{ }}$
Answer
576k+ views
Hint: First calculate the third side of the triangle by applying Pythagoras Theorem for right angled triangle, ${c^2} = {a^2} + {b^2}$, where $c$ is the length of the hypotenuse and $a$ and $b$ are the lengths of other two sides. Then apply trigonometric formulas $\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$ and $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$ to calculate the required values.
Complete step-by-step answer:
According to the question, in a right angled triangle $\Delta ABC$, right angled at $B$, we have been given lengths of two sides.
$ \Rightarrow AB = 24{\text{ cm, }}BC = 7{\text{ cm}}$
We can apply Pythagoras Theorem to calculate the length of the third side. According to this theorem, in a right angled triangle, ${c^2} = {a^2} + {b^2}$, where $c$ is the length of the hypotenuse and $a$ and $b$ are the lengths of other two sides.
Applying this theorem, we’ll get:
$ \Rightarrow A{C^2} = A{B^2} + B{C^2}$
Putting values of $AB$ and $BC$, we have:
$
\Rightarrow A{C^2} = {\left( {24} \right)^2} + {\left( 7 \right)^2} \\
\Rightarrow A{C^2} = 576 + 49 = 625 \\
\Rightarrow AC = 25{\text{ }}.....{\text{(1)}}
$
Also $AC$ is the perpendicular for both the angles $A$ and $C$ as it is evident from the figure.
In the first case, we have to determine the values of $\sin A$ and $\cos A$.
In the above diagram, for angle $A$, base is $AB$ and perpendicular is $BC$. Further, we know that $\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$ and $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$. Using these formulas, we’ll get:
$
\Rightarrow \sin A = \dfrac{{BC}}{{AC}} \\
\Rightarrow \cos A = \dfrac{{AB}}{{AC}}
$
Putting $AB = 24{\text{ cm, }}BC = 7{\text{ cm}}$ and $AC = 25{\text{ cm}}$, we’ll get:
$
\Rightarrow \sin A = \dfrac{7}{{25}} \\
\Rightarrow \cos A = \dfrac{{24}}{{25}}
$
In the second case, we have to determine the values of $\sin C$ and $\cos C$.
Again in the above diagram, for angle $C$, base is $BC$ and perpendicular is $AB$. Again applying the formulas $\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$ and $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$, we’ll get:
\[
\Rightarrow \sin C = \dfrac{{AB}}{{AC}} \\
\Rightarrow \cos C = \dfrac{{BC}}{{AC}}
\]
Putting $AB = 24{\text{ cm, }}BC = 7{\text{ cm}}$ and $AC = 25{\text{ cm}}$, we’ll get:
$
\Rightarrow \sin C = \dfrac{{24}}{{25}} \\
\Rightarrow \cos C = \dfrac{7}{{25}}
$
So the required values are:
$
\Rightarrow \sin A = \dfrac{7}{{25}} \\
\Rightarrow \cos A = \dfrac{{24}}{{25}} \\
\Rightarrow \sin C = \dfrac{{24}}{{25}} \\
\Rightarrow \cos C = \dfrac{7}{{25}}
$
Note: The formulas of first three trigonometric ratios are:
\[ \Rightarrow \sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}},{\text{ }}\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}{\text{ and }}\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}\].
The other three trigonometric ratios are reciprocal of these three as shown below:
$ \Rightarrow \operatorname{cosec} = \dfrac{1}{{\sin \theta }},{\text{ }}\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cot \theta = \dfrac{1}{{\tan \theta }}$.
Thus remembering the first three formulas and taking their reciprocal, we can determine all the six trigonometric ratios.
Complete step-by-step answer:
According to the question, in a right angled triangle $\Delta ABC$, right angled at $B$, we have been given lengths of two sides.
$ \Rightarrow AB = 24{\text{ cm, }}BC = 7{\text{ cm}}$
We can apply Pythagoras Theorem to calculate the length of the third side. According to this theorem, in a right angled triangle, ${c^2} = {a^2} + {b^2}$, where $c$ is the length of the hypotenuse and $a$ and $b$ are the lengths of other two sides.
Applying this theorem, we’ll get:
$ \Rightarrow A{C^2} = A{B^2} + B{C^2}$
Putting values of $AB$ and $BC$, we have:
$
\Rightarrow A{C^2} = {\left( {24} \right)^2} + {\left( 7 \right)^2} \\
\Rightarrow A{C^2} = 576 + 49 = 625 \\
\Rightarrow AC = 25{\text{ }}.....{\text{(1)}}
$
Also $AC$ is the perpendicular for both the angles $A$ and $C$ as it is evident from the figure.
In the first case, we have to determine the values of $\sin A$ and $\cos A$.
In the above diagram, for angle $A$, base is $AB$ and perpendicular is $BC$. Further, we know that $\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$ and $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$. Using these formulas, we’ll get:
$
\Rightarrow \sin A = \dfrac{{BC}}{{AC}} \\
\Rightarrow \cos A = \dfrac{{AB}}{{AC}}
$
Putting $AB = 24{\text{ cm, }}BC = 7{\text{ cm}}$ and $AC = 25{\text{ cm}}$, we’ll get:
$
\Rightarrow \sin A = \dfrac{7}{{25}} \\
\Rightarrow \cos A = \dfrac{{24}}{{25}}
$
In the second case, we have to determine the values of $\sin C$ and $\cos C$.
Again in the above diagram, for angle $C$, base is $BC$ and perpendicular is $AB$. Again applying the formulas $\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}}$ and $\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}$, we’ll get:
\[
\Rightarrow \sin C = \dfrac{{AB}}{{AC}} \\
\Rightarrow \cos C = \dfrac{{BC}}{{AC}}
\]
Putting $AB = 24{\text{ cm, }}BC = 7{\text{ cm}}$ and $AC = 25{\text{ cm}}$, we’ll get:
$
\Rightarrow \sin C = \dfrac{{24}}{{25}} \\
\Rightarrow \cos C = \dfrac{7}{{25}}
$
So the required values are:
$
\Rightarrow \sin A = \dfrac{7}{{25}} \\
\Rightarrow \cos A = \dfrac{{24}}{{25}} \\
\Rightarrow \sin C = \dfrac{{24}}{{25}} \\
\Rightarrow \cos C = \dfrac{7}{{25}}
$
Note: The formulas of first three trigonometric ratios are:
\[ \Rightarrow \sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}},{\text{ }}\cos \theta = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}}{\text{ and }}\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}\].
The other three trigonometric ratios are reciprocal of these three as shown below:
$ \Rightarrow \operatorname{cosec} = \dfrac{1}{{\sin \theta }},{\text{ }}\sec \theta = \dfrac{1}{{\cos \theta }}{\text{ and }}\cot \theta = \dfrac{1}{{\tan \theta }}$.
Thus remembering the first three formulas and taking their reciprocal, we can determine all the six trigonometric ratios.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

