
In \[\Delta ABC\], \[\left( {a\cot A + b\cot B + c\cot C} \right)\] (where a, b, c are the sides of a triangle) is equals to
(A) \[2R + r\]
(B) \[R + 2r\]
(C) \[R + r\]
(D) \[2\left( {R + r} \right)\]
Answer
565.8k+ views
Hint: In this question, we have to choose the required specific form of the given particulars.
First we will apply sine formula in the given particular and then using the trigonometric formulas we will get the required result.
Formula used: According to the law, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\]
Here a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles (see the figure to the right), while R is the radius of the triangle's circumcircle.
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin A\sin B = \dfrac{1}{2}(\cos (A - B) + \cos (A + B))\]
\[\left( {\cos A + \cos B} \right) = \left( {2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}} \right)\]
\[\cos C = 1 - {\sin ^2}\dfrac{C}{2}\]
Complete step-by-step answer:
We need to find out in the \[\Delta ABC\], \[\left( {a\cot A + b\cot B + c\cot C} \right)\] (where a,b,c are the sides of a triangle).
using sine formula, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\],
We can equate this formula and we can write it as,
$\Rightarrow$\[\dfrac{a}{{\sin A}} = 2R\]
Taking cross multiplication we get,
$\Rightarrow$\[a = 2R\sin A\]
Similarly we can write it as
$\Rightarrow$\[\dfrac{b}{{\sin B}} = 2R\]
Taking cross multiplication we get,
$\Rightarrow$\[b = 2R\sin B\]
Also, we can write it as.
$\Rightarrow$\[\dfrac{c}{{\sin C}} = 2R\]
Taking cross multiplication we get,
$\Rightarrow$\[c = 2R\sin C\]
Putting the value in the given equation,
$\Rightarrow$\[\left( {a\cot A + b\cot B + c\cot C} \right)\]\[ = 2R\sin A\cot A + 2R\sin B\cot B + 2R\sin C\cot C\]
We use from trigonometric formula, \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], using it we get,
\[ \Rightarrow 2R\sin A\dfrac{{\cos A}}{{\sin A}} + 2R\sin B\dfrac{{\cos B}}{{\sin B}} + 2R\sin C\dfrac{{\cos C}}{{\sin C}}\]
Cancelling the same term and we get,
\[ \Rightarrow 2R\left( {\cos A + \cos B + \cos C} \right)\]
Using the formula, and we get,
\[ \Rightarrow 2R\left( {2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} + 1 - {{\sin }^2}\dfrac{C}{2}} \right)\]
Since A,B,C are the angles of a triangle ,so \[A + B + C = \pi \]
\[ \Rightarrow 2R\left\{ {1 + 2\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} - {{\sin }^2}\dfrac{C}{2}} \right\}\]
Now we use the formula that,\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow 2R\left\{ {1 + 2\sin \left( {\dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} - {{\sin }^2}\dfrac{C}{2}} \right\}\]
Taking common we get,
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \sin \dfrac{C}{2}} \right)} \right\}\]
Since A, B, C are the angles of a triangle, so \[A + B + C = \pi \], using it we get,
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \sin \left( {\dfrac{\pi }{2} - \dfrac{{A + B}}{2}} \right)} \right)} \right\}\]
Now we use the formula that, \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \cos \dfrac{{A + B}}{2}} \right)} \right\}\]
Using the formula, \[\sin A\sin B = \dfrac{1}{2}(\cos (A - B) + \cos (A + B))\]we get,
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2} \times 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}} \right\}\]
Now multiply the term and we get,
\[ \Rightarrow 2R\left\{ {1 + 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}} \right\}\]
We know that, \[4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} = \dfrac{r}{R}\]
So, we can write it as,
\[2R\left( {1 + 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}} \right) = 2R\left( {1 + \dfrac{r}{R}} \right)\]
Taking LCM on the bracket term and we get,
\[ = 2R\dfrac{{R + r}}{R}\]
On cancelling the term,
\[ = 2\left( {R + r} \right)\]
Thus (D) is the correct option.
Note: In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of a triangle (any shape) to the sines of its angles.
According to the law, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\]
Where a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles, while R is the radius of the triangle's circumcircle.
First we will apply sine formula in the given particular and then using the trigonometric formulas we will get the required result.
Formula used: According to the law, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\]
Here a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles (see the figure to the right), while R is the radius of the triangle's circumcircle.
\[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\]
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[\sin A\sin B = \dfrac{1}{2}(\cos (A - B) + \cos (A + B))\]
\[\left( {\cos A + \cos B} \right) = \left( {2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2}} \right)\]
\[\cos C = 1 - {\sin ^2}\dfrac{C}{2}\]
Complete step-by-step answer:
We need to find out in the \[\Delta ABC\], \[\left( {a\cot A + b\cot B + c\cot C} \right)\] (where a,b,c are the sides of a triangle).
using sine formula, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\],
We can equate this formula and we can write it as,
$\Rightarrow$\[\dfrac{a}{{\sin A}} = 2R\]
Taking cross multiplication we get,
$\Rightarrow$\[a = 2R\sin A\]
Similarly we can write it as
$\Rightarrow$\[\dfrac{b}{{\sin B}} = 2R\]
Taking cross multiplication we get,
$\Rightarrow$\[b = 2R\sin B\]
Also, we can write it as.
$\Rightarrow$\[\dfrac{c}{{\sin C}} = 2R\]
Taking cross multiplication we get,
$\Rightarrow$\[c = 2R\sin C\]
Putting the value in the given equation,
$\Rightarrow$\[\left( {a\cot A + b\cot B + c\cot C} \right)\]\[ = 2R\sin A\cot A + 2R\sin B\cot B + 2R\sin C\cot C\]
We use from trigonometric formula, \[\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}\], using it we get,
\[ \Rightarrow 2R\sin A\dfrac{{\cos A}}{{\sin A}} + 2R\sin B\dfrac{{\cos B}}{{\sin B}} + 2R\sin C\dfrac{{\cos C}}{{\sin C}}\]
Cancelling the same term and we get,
\[ \Rightarrow 2R\left( {\cos A + \cos B + \cos C} \right)\]
Using the formula, and we get,
\[ \Rightarrow 2R\left( {2\cos \dfrac{{A + B}}{2}\cos \dfrac{{A - B}}{2} + 1 - {{\sin }^2}\dfrac{C}{2}} \right)\]
Since A,B,C are the angles of a triangle ,so \[A + B + C = \pi \]
\[ \Rightarrow 2R\left\{ {1 + 2\cos \left( {\dfrac{\pi }{2} - \dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} - {{\sin }^2}\dfrac{C}{2}} \right\}\]
Now we use the formula that,\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
\[ \Rightarrow 2R\left\{ {1 + 2\sin \left( {\dfrac{C}{2}} \right)\cos \dfrac{{A - B}}{2} - {{\sin }^2}\dfrac{C}{2}} \right\}\]
Taking common we get,
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \sin \dfrac{C}{2}} \right)} \right\}\]
Since A, B, C are the angles of a triangle, so \[A + B + C = \pi \], using it we get,
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \sin \left( {\dfrac{\pi }{2} - \dfrac{{A + B}}{2}} \right)} \right)} \right\}\]
Now we use the formula that, \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2}\left( {\cos \dfrac{{A - B}}{2} - \cos \dfrac{{A + B}}{2}} \right)} \right\}\]
Using the formula, \[\sin A\sin B = \dfrac{1}{2}(\cos (A - B) + \cos (A + B))\]we get,
\[ \Rightarrow 2R\left\{ {1 + 2\sin \dfrac{C}{2} \times 2\sin \dfrac{A}{2}\sin \dfrac{B}{2}} \right\}\]
Now multiply the term and we get,
\[ \Rightarrow 2R\left\{ {1 + 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}} \right\}\]
We know that, \[4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} = \dfrac{r}{R}\]
So, we can write it as,
\[2R\left( {1 + 4\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}} \right) = 2R\left( {1 + \dfrac{r}{R}} \right)\]
Taking LCM on the bracket term and we get,
\[ = 2R\dfrac{{R + r}}{R}\]
On cancelling the term,
\[ = 2\left( {R + r} \right)\]
Thus (D) is the correct option.
Note: In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of a triangle (any shape) to the sines of its angles.
According to the law, \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\]
Where a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite angles, while R is the radius of the triangle's circumcircle.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

