
In $\cos x+\cos y=a$ , $\cos 2x+\cos 2y=b$ , $\cos 3x+\cos 3y=c$ , then find the value of $a\left( 2{{a}^{2}}-3 \right)$
$\begin{align}
& \text{a) ab - c} \\
& \text{b) 2ab - c} \\
& \text{c) 3ab - c} \\
& \text{d) 3ac - b} \\
\end{align}$
Answer
578.7k+ views
Hint: Now we are given with $\cos 2x+\cos 2y=b$ and we know \[\cos 2\theta =2{{\cos }^{2}}\theta -1\] hence using this we will find the value of ${{\cos }^{2}}x+{{\cos }^{2}}y$ . Now we know the value of ${{\cos }^{2}}x+{{\cos }^{2}}y$ and also $\cos x+\cos y=a$ . Hence we will use formula ${{\left( a+b \right)}^{2}}-2ab={{a}^{2}}+{{b}^{2}}$ to find the value of $\cos x\cos y$ . Now consider the equation $\cos 3x+\cos 3y=c$ and we know that $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $ to this equation we will use the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and then substitute the values of $\cos x+\cos y$ , ${{\cos }^{2}}x+{{\cos }^{2}}y$ and $\cos x\cos y$ . Hence we will find a relation in a, b and c. we will rearrange and simplify the equation to arrive at final equation
Complete step-by-step answer:
Now we are given that $\cos x+\cos y=a$
Let $\cos x+\cos y=a..................(1)$
Now consider the equation.
$\cos 2x+\cos 2y=b$
Now we know that \[\cos 2\theta =2{{\cos }^{2}}\theta -1\]
Hence we have.
$\begin{align}
& 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=b \\
& \Rightarrow 2{{\cos }^{2}}x-2+2{{\cos }^{2}}y=b \\
\end{align}$
Now taking – 2 to RHS we get
$2{{\cos }^{2}}x+2{{\cos }^{2}}y=b+2$
Now dividing the whole equation by 2 we get
${{\cos }^{2}}x+{{\cos }^{2}}y=\left( \dfrac{b+2}{2} \right)....................(2)$
Now we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Taking 2ab to the RHS we get the formula as ${{\left( a+b \right)}^{2}}-2ab={{a}^{2}}+{{b}^{2}}$ .
Now using this formula to equation (2) we get
${{\left( \cos x+\cos y \right)}^{2}}-2\cos x\cos y=\left( \dfrac{b+2}{2} \right)$
Now we know from equation (1) that $\cos x+\cos y=a$ hence using this substitution we get.
${{a}^{2}}-2\cos x\cos y=\left( \dfrac{b+2}{2} \right)$
Now taking $2\cos x\cos y$ to RHS we get
${{a}^{2}}-\left( \dfrac{b+2}{2} \right)=2\cos x\cos y$
Dividing the whole equation by 2 we get
$\cos x\cos y=\dfrac{{{a}^{2}}-\left( \dfrac{b+2}{2} \right)}{2}$
$\Rightarrow \cos x\cos y=\dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4}................(3)$
Now consider the equation $\cos 3x+\cos 3y=c$
We know that $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $
Using this formula in the above equation we get.
$4{{\cos }^{3}}x-3\cos x+4{{\cos }^{3}}y-3\cos y=c$
Now rearranging the terms we get
$4{{\cos }^{3}}x+4{{\cos }^{3}}y-3\cos x-3\cos y=c$
Now let us take 4 and – 3 common from the equation.
$4\left( {{\cos }^{3}}x+{{\cos }^{3}}y \right)-3\left( \cos x+\cos y \right)=c$
Now we know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ hence we will use this formula in the above equation to get
$4\left[ \left( \cos x+\cos y \right)\left( {{\cos }^{2}}x-\cos x\cos y+{{\cos }^{2}}y \right) \right]-3\left( \cos x+\cos y \right)=c$
Rearranging the terms in the above equation we get
$4\left[ \left( \cos x+\cos y \right)\left( \left( {{\cos }^{2}}x+{{\cos }^{2}}y \right)-\left( \cos x\cos y \right) \right) \right]-3\left( \cos x+\cos y \right)=c$
Now let us substitute the values from equation (1), equation (2) and equation (3).
Hence we get,
\[4\left[ \left( a \right)\left( \left( \dfrac{b+2}{2} \right)-\left( \dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4} \right) \right) \right]-3\left( a \right)=c\]
Now we have an equation in a, b and c. to arrive at final answer we will have to just simplify the equation.
\[\begin{align}
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{b+2}{2}-\dfrac{{{a}^{2}}}{2}+\dfrac{b+2}{4} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{2b+4}{4}-\dfrac{{{a}^{2}}}{2}+\dfrac{b+2}{4} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{2b+4+b+2}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{3b+6}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{3\left( b+2 \right)}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\
\end{align}\]
Now taking 4 inside the bracket we get
\[\left[ \left( a \right)\left( 3\left( b+2 \right)-2{{a}^{2}} \right) \right]-3\left( a \right)=c\]
\[\begin{align}
& \Rightarrow \left[ \left( a \right)\left( 3\left( b+2 \right)-2{{a}^{2}} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 3ab+6a-2{{a}^{3}}-3a=c \\
& \Rightarrow 3ab-2{{a}^{3}}+3a=c \\
& \Rightarrow 3ab-a\left( 2{{a}^{2}}-1 \right)=c \\
\end{align}\]
Rearranging terms by shifting $a\left( 2{{a}^{2}}-1 \right)$ to RHS and c to LHS we get
\[3ab-c=a\left( {{a}^{2}}-1 \right)\]
Hence we finally get \[a\left( {{a}^{2}}-1 \right)=3ab-c\]
Note: Note that the formula for ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and not $\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$ . Also once we get the equation \[4\left[ \left( a \right)\left( \left( \dfrac{b+2}{2} \right)-\left( \dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4} \right) \right) \right]-3\left( a \right)=c\] while simplifying the equation note that we need to find the value of \[a\left( {{a}^{2}}-1 \right)\] and hence evaluate accordingly.
Complete step-by-step answer:
Now we are given that $\cos x+\cos y=a$
Let $\cos x+\cos y=a..................(1)$
Now consider the equation.
$\cos 2x+\cos 2y=b$
Now we know that \[\cos 2\theta =2{{\cos }^{2}}\theta -1\]
Hence we have.
$\begin{align}
& 2{{\cos }^{2}}x-1+2{{\cos }^{2}}y-1=b \\
& \Rightarrow 2{{\cos }^{2}}x-2+2{{\cos }^{2}}y=b \\
\end{align}$
Now taking – 2 to RHS we get
$2{{\cos }^{2}}x+2{{\cos }^{2}}y=b+2$
Now dividing the whole equation by 2 we get
${{\cos }^{2}}x+{{\cos }^{2}}y=\left( \dfrac{b+2}{2} \right)....................(2)$
Now we know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Taking 2ab to the RHS we get the formula as ${{\left( a+b \right)}^{2}}-2ab={{a}^{2}}+{{b}^{2}}$ .
Now using this formula to equation (2) we get
${{\left( \cos x+\cos y \right)}^{2}}-2\cos x\cos y=\left( \dfrac{b+2}{2} \right)$
Now we know from equation (1) that $\cos x+\cos y=a$ hence using this substitution we get.
${{a}^{2}}-2\cos x\cos y=\left( \dfrac{b+2}{2} \right)$
Now taking $2\cos x\cos y$ to RHS we get
${{a}^{2}}-\left( \dfrac{b+2}{2} \right)=2\cos x\cos y$
Dividing the whole equation by 2 we get
$\cos x\cos y=\dfrac{{{a}^{2}}-\left( \dfrac{b+2}{2} \right)}{2}$
$\Rightarrow \cos x\cos y=\dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4}................(3)$
Now consider the equation $\cos 3x+\cos 3y=c$
We know that $\cos 3\theta =4{{\cos }^{3}}\theta -3\cos \theta $
Using this formula in the above equation we get.
$4{{\cos }^{3}}x-3\cos x+4{{\cos }^{3}}y-3\cos y=c$
Now rearranging the terms we get
$4{{\cos }^{3}}x+4{{\cos }^{3}}y-3\cos x-3\cos y=c$
Now let us take 4 and – 3 common from the equation.
$4\left( {{\cos }^{3}}x+{{\cos }^{3}}y \right)-3\left( \cos x+\cos y \right)=c$
Now we know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ hence we will use this formula in the above equation to get
$4\left[ \left( \cos x+\cos y \right)\left( {{\cos }^{2}}x-\cos x\cos y+{{\cos }^{2}}y \right) \right]-3\left( \cos x+\cos y \right)=c$
Rearranging the terms in the above equation we get
$4\left[ \left( \cos x+\cos y \right)\left( \left( {{\cos }^{2}}x+{{\cos }^{2}}y \right)-\left( \cos x\cos y \right) \right) \right]-3\left( \cos x+\cos y \right)=c$
Now let us substitute the values from equation (1), equation (2) and equation (3).
Hence we get,
\[4\left[ \left( a \right)\left( \left( \dfrac{b+2}{2} \right)-\left( \dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4} \right) \right) \right]-3\left( a \right)=c\]
Now we have an equation in a, b and c. to arrive at final answer we will have to just simplify the equation.
\[\begin{align}
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{b+2}{2}-\dfrac{{{a}^{2}}}{2}+\dfrac{b+2}{4} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{2b+4}{4}-\dfrac{{{a}^{2}}}{2}+\dfrac{b+2}{4} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{2b+4+b+2}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{3b+6}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 4\left[ \left( a \right)\left( \dfrac{3\left( b+2 \right)}{4}-\dfrac{{{a}^{2}}}{2} \right) \right]-3\left( a \right)=c \\
\end{align}\]
Now taking 4 inside the bracket we get
\[\left[ \left( a \right)\left( 3\left( b+2 \right)-2{{a}^{2}} \right) \right]-3\left( a \right)=c\]
\[\begin{align}
& \Rightarrow \left[ \left( a \right)\left( 3\left( b+2 \right)-2{{a}^{2}} \right) \right]-3\left( a \right)=c \\
& \Rightarrow 3ab+6a-2{{a}^{3}}-3a=c \\
& \Rightarrow 3ab-2{{a}^{3}}+3a=c \\
& \Rightarrow 3ab-a\left( 2{{a}^{2}}-1 \right)=c \\
\end{align}\]
Rearranging terms by shifting $a\left( 2{{a}^{2}}-1 \right)$ to RHS and c to LHS we get
\[3ab-c=a\left( {{a}^{2}}-1 \right)\]
Hence we finally get \[a\left( {{a}^{2}}-1 \right)=3ab-c\]
Note: Note that the formula for ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and not $\left( a+b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)$ . Also once we get the equation \[4\left[ \left( a \right)\left( \left( \dfrac{b+2}{2} \right)-\left( \dfrac{{{a}^{2}}}{2}-\dfrac{b+2}{4} \right) \right) \right]-3\left( a \right)=c\] while simplifying the equation note that we need to find the value of \[a\left( {{a}^{2}}-1 \right)\] and hence evaluate accordingly.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

