
In any $\Delta ABC$ , prove that
${{\left( a-b \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( a+b\right)}^{2}}{{\sin}^{2}} \dfrac{C}{2} = {{c}^{2}}$
Answer
595.5k+ views
Hint: Try to simplify the left-hand side of the equation given in the question by the application of the sine rule of a triangle followed by the use of the formula of sin2A and the formula of (sinX-sinY).
Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.
Now starting with the left-hand side of the equation that is given in the question.
We know, according to the sine rule of the triangle: $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k$ and in other terms, it can be written as:
$\begin{align}
& a=k\sin A \\
& b=k\sin B \\
& c=k\sin C \\
\end{align}$
So, applying this to our expression, we get
${{\left( a-b \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( a+b \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
$={{\left( k\operatorname{sinA}-k\sin B \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( k\sin A+k\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
Now we will take ${{k}^{2}}$ common from each term. On doing so, we get
$={{k}^{2}}{{\left( \operatorname{sinA}-\sin B \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{k}^{2}}{{\left( \sin A+\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
According to the formula: $2\sin \left( \dfrac{X-Y}{2} \right)\cos \left( \dfrac{X+Y}{2} \right)=\sin \left( X \right)-sin\left( Y \right)$ , we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( \dfrac{A+B}{2} \right){{\cos }^{2}}\dfrac{C}{2}+{{k}^{2}}{{\left( \sin A+\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
Now according to the formula: $2\sin \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)=\sin \left( X \right)+sin\left( Y \right)$ , we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( \dfrac{A+B}{2} \right){{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\left( \dfrac{A+B}{2} \right){{\sin }^{2}}\dfrac{C}{2}$
Now as ABC is a triangle, we can say:
$\angle A+\angle B+\angle C=180{}^\circ $
$\Rightarrow \angle A+\angle B=180{}^\circ -\angle C$
So, substituting the value of A+B in our expression. On doing so, we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( 90{}^\circ -\dfrac{C}{2} \right){{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\left( 90{}^\circ -\dfrac{C}{2} \right){{\sin }^{2}}\dfrac{C}{2}$
We know $\sin \left( 90{}^\circ -X \right)=\cos X$ and $\cos \left( 90{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\dfrac{C}{2}{{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\dfrac{C}{2}{{\sin }^{2}}\dfrac{C}{2}$
Now, when we use the formula $\sin 2X=2\operatorname{sinX}\operatorname{cosX}$ , we get
$={{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}C+{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right){{\sin }^{2}}C$
Now using the sine rule we can say that $k\sin C=c$ .
$={{c}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)+{{c}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)$
Now we know ${{\sin }^{2}}X+{{\cos }^{2}}X=1$ . So, our expression becomes:
$={{c}^{2}}\left( si{{n}^{2}}\left( \dfrac{A-B}{2} \right)+{{\cos }^{2}}\left( \dfrac{A-B}{2} \right) \right)$
$={{c}^{2}}$
The left-hand side of the equation given in the question is equal to the right-hand side of the equation. Hence, we can say that we have proved the equation given in the question.
Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta }$ , where $\Delta $ represents the area of the triangle.
Complete step-by-step answer:
Before starting with the solution, let us draw a diagram for better visualisation.
Now starting with the left-hand side of the equation that is given in the question.
We know, according to the sine rule of the triangle: $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k$ and in other terms, it can be written as:
$\begin{align}
& a=k\sin A \\
& b=k\sin B \\
& c=k\sin C \\
\end{align}$
So, applying this to our expression, we get
${{\left( a-b \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( a+b \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
$={{\left( k\operatorname{sinA}-k\sin B \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{\left( k\sin A+k\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
Now we will take ${{k}^{2}}$ common from each term. On doing so, we get
$={{k}^{2}}{{\left( \operatorname{sinA}-\sin B \right)}^{2}}{{\cos }^{2}}\dfrac{C}{2}+{{k}^{2}}{{\left( \sin A+\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
According to the formula: $2\sin \left( \dfrac{X-Y}{2} \right)\cos \left( \dfrac{X+Y}{2} \right)=\sin \left( X \right)-sin\left( Y \right)$ , we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( \dfrac{A+B}{2} \right){{\cos }^{2}}\dfrac{C}{2}+{{k}^{2}}{{\left( \sin A+\sin B \right)}^{2}}{{\sin }^{2}}\dfrac{C}{2}$
Now according to the formula: $2\sin \left( \dfrac{X+Y}{2} \right)\cos \left( \dfrac{X-Y}{2} \right)=\sin \left( X \right)+sin\left( Y \right)$ , we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( \dfrac{A+B}{2} \right){{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\left( \dfrac{A+B}{2} \right){{\sin }^{2}}\dfrac{C}{2}$
Now as ABC is a triangle, we can say:
$\angle A+\angle B+\angle C=180{}^\circ $
$\Rightarrow \angle A+\angle B=180{}^\circ -\angle C$
So, substituting the value of A+B in our expression. On doing so, we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\left( 90{}^\circ -\dfrac{C}{2} \right){{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\left( 90{}^\circ -\dfrac{C}{2} \right){{\sin }^{2}}\dfrac{C}{2}$
We know $\sin \left( 90{}^\circ -X \right)=\cos X$ and $\cos \left( 90{}^\circ -X \right)=\sin X$ . Using this in our expression, we get
$=4{{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}\dfrac{C}{2}{{\cos }^{2}}\dfrac{C}{2}+4{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)co{{s}^{2}}\dfrac{C}{2}{{\sin }^{2}}\dfrac{C}{2}$
Now, when we use the formula $\sin 2X=2\operatorname{sinX}\operatorname{cosX}$ , we get
$={{k}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)si{{n}^{2}}C+{{k}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right){{\sin }^{2}}C$
Now using the sine rule we can say that $k\sin C=c$ .
$={{c}^{2}}si{{n}^{2}}\left( \dfrac{A-B}{2} \right)+{{c}^{2}}{{\cos }^{2}}\left( \dfrac{A-B}{2} \right)$
Now we know ${{\sin }^{2}}X+{{\cos }^{2}}X=1$ . So, our expression becomes:
$={{c}^{2}}\left( si{{n}^{2}}\left( \dfrac{A-B}{2} \right)+{{\cos }^{2}}\left( \dfrac{A-B}{2} \right) \right)$
$={{c}^{2}}$
The left-hand side of the equation given in the question is equal to the right-hand side of the equation. Hence, we can say that we have proved the equation given in the question.
Note: Be careful about the calculation and the signs while opening the brackets. Also, you need to learn the sine rule and the cosine rule as they are used very often. The k in the sine rule is twice the radius of the circumcircle of the triangle, i.e., sine rule can also be written as $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=k=2R=\dfrac{abc}{2\Delta }$ , where $\Delta $ represents the area of the triangle.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

