
In an \[LCR\] series a.c. circuit, the voltage across each of the components \[L,{\text{ }}C\] and \[R\] is \[50{\text{ }}V\]. The voltage across the \[LC\] combination will be:
A) $50 V$
B) $50\sqrt 2 V$
C) $100 V$
D) $0 V$ (zero)
Answer
570.9k+ views
Hint: In \[LCR\] series a.c circuit, the components \[L,{\text{ }}C\] and \[R\] are related to each other in a way that the voltage across the inductor \[L\](${V_L}$) and voltage across the capacitor \[C\](${V_C}$) has a constant phase difference. The voltage across the resistance \[R\](${V_R}$) and current($i$) does not have any phase difference.
Complete step by step solution:
According to the question, a \[LCR\] series a.c. circuit is given. The voltage across \[L,{\text{ }}C\] and \[R\] is \[50{\text{ }}V\].
We know that in an \[LCR\] series circuit, the voltage across the inductor \[L\](${V_L}$) leads the current($i$) by \[{90^ \circ }\] and voltage across the capacitor \[C\](${V_C}$) lags the current($i$) by \[{90^ \circ }\]. So, the inductance and the capacitance are in opposite phases. In an \[LCR\] series circuit, the voltage across the resistance \[R\](${V_R}$) is in the same phase with current($i$).
So, the voltage across the \[LC\] combination will be given as:
$
{V_{LC}} = {V_L} - {V_C} \\
\Rightarrow {V_{LC}} = 50 - 50 \\
\Rightarrow {V_{LC}} = 0 \\
$
To understand the phase difference in different voltages, we can make a graph which shows the phase difference between voltages.
According to the above graph, ${V_R}$ and $i$ are in the same phase. ${V_L}$leads current $i$ by \[{90^ \circ }\] and ${V_C}$ lags current $i$ by \[{90^ \circ }\]. So, the voltage across \[LC\] combination is zero.
Hence, option (D) is correct.
Note: Voltage across the inductor ${V_L}$ and current $i$ has a phase difference. Voltage across the capacitor ${V_C}$ and current $i$ has a phase difference. The voltage across the resistance ${V_R}$ and current $i$ has zero phase difference. According to the graph, current $i$ and voltage across the resistance ${V_R}$ are plotted on X-axis.
Complete step by step solution:
According to the question, a \[LCR\] series a.c. circuit is given. The voltage across \[L,{\text{ }}C\] and \[R\] is \[50{\text{ }}V\].
We know that in an \[LCR\] series circuit, the voltage across the inductor \[L\](${V_L}$) leads the current($i$) by \[{90^ \circ }\] and voltage across the capacitor \[C\](${V_C}$) lags the current($i$) by \[{90^ \circ }\]. So, the inductance and the capacitance are in opposite phases. In an \[LCR\] series circuit, the voltage across the resistance \[R\](${V_R}$) is in the same phase with current($i$).
So, the voltage across the \[LC\] combination will be given as:
$
{V_{LC}} = {V_L} - {V_C} \\
\Rightarrow {V_{LC}} = 50 - 50 \\
\Rightarrow {V_{LC}} = 0 \\
$
To understand the phase difference in different voltages, we can make a graph which shows the phase difference between voltages.
According to the above graph, ${V_R}$ and $i$ are in the same phase. ${V_L}$leads current $i$ by \[{90^ \circ }\] and ${V_C}$ lags current $i$ by \[{90^ \circ }\]. So, the voltage across \[LC\] combination is zero.
Hence, option (D) is correct.
Note: Voltage across the inductor ${V_L}$ and current $i$ has a phase difference. Voltage across the capacitor ${V_C}$ and current $i$ has a phase difference. The voltage across the resistance ${V_R}$ and current $i$ has zero phase difference. According to the graph, current $i$ and voltage across the resistance ${V_R}$ are plotted on X-axis.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

