
In an AP, if $$S_{5}+S_{7}=167$$ and $$S_{10}=235$$, then find the AP, where $$S_{n}$$ denotes the sum of first n terms.
Answer
594.6k+ views
Hint: In this question it is given if $$S_{5}+S_{7}=167$$ and $$S_{10}=235$$, then we have to find the AP, where $$S_{n}$$ denotes the sum of first n terms. So to find the solution we need to know the formula of summation of first n terms in an Arithmetic Progression,
i.e, $$S_{n}=\dfrac{n}{2} \left( 2a+\left( n-1\right) d\right) $$...........(1)
Where ‘a’ is the first term of AP and ‘d’ is the common difference.
Complete step-by-step solution:
Let the first term of Ap is ‘a’ and the common difference ‘d’.
Given,
$$S_{5}+S_{7}=167$$
$$\Rightarrow \dfrac{5}{2} \left( 2a+\left( 5-1\right) d\right) +\dfrac{7}{2} \left( 2a+\left( 7-1\right) d\right) =167$$ [ by using formula (1)]
$$\Rightarrow \dfrac{5}{2} \left( 2a+4d\right) +\dfrac{7}{2} \left( 2a+6d\right) =167$$
$$\Rightarrow 5\left( 2a+4d\right) +7\left( 2a+6d\right) =2\times 167$$ [ Multiplying both side by 2]
$$\Rightarrow 10a+20d+14a+42d=334$$
$$\Rightarrow 24a+62d=334$$
$$\Rightarrow 12a+31d=167$$.....(1) [dividing both side by 2]
Now the second condition,
$$S_{10}=235$$
$$\Rightarrow \dfrac{10}{2} \left( 2a+\left( 10-1\right) d\right) =235$$
$$\Rightarrow 5\left( 2a+9d\right) =235$$
$$\Rightarrow \left( 2a+9d\right) =\dfrac{235}{5}$$
$$\Rightarrow \left( 2a+9d\right) =47$$.......(2)
Equation (1) and (2) are the pair of linear equations, so we are going to solve it by substitution method.
From equation (1),
$$12a+31d=167$$
$$\Rightarrow 12a=167-31d$$
$$\Rightarrow a=\dfrac{167-31d}{12}$$
Now substituting the value of ‘a’ in the equation (2), we get,
$$ 2a+9d=47$$
$$\Rightarrow 2\left( \dfrac{167-31d}{12} \right) +9d=47$$
$$\Rightarrow \dfrac{167-31d}{6} +9d=47$$
$$\Rightarrow 167-31d+6\times 9d=6\times 47$$ [multiplying both side by 6]
$$\Rightarrow 167-31d+54d=282$$
$$\Rightarrow 23d=282-167$$
$$\Rightarrow 23d=115$$
$$\Rightarrow d=\dfrac{115}{23}$$
$$\Rightarrow d=5$$
Now putting the value of ‘d’ in equation (2), we get,
$$2a+9\times 5=47$$
$$\Rightarrow 2a+45=47$$
$$\Rightarrow 2a=47-45$$
$$\Rightarrow 2a=2$$
$$\Rightarrow a=1$$
Therefore, the terms of the given AP is,
a, a+d, a+2d, a+3d,...
$\Rightarrow$ 1, 1+5, 1+2$\times 5$, 1+3$\times 5$,...
$\Rightarrow$ 1, 6, 11, 16, …
Note: So in order to find the A.P, you need to find the first term and common difference of the A.P , because if you know the first term ‘a’ and common difference ‘d’ then you can easily write the each term of A.P, i.e, a, a+d, a+2d, a+3d,...
i.e, $$S_{n}=\dfrac{n}{2} \left( 2a+\left( n-1\right) d\right) $$...........(1)
Where ‘a’ is the first term of AP and ‘d’ is the common difference.
Complete step-by-step solution:
Let the first term of Ap is ‘a’ and the common difference ‘d’.
Given,
$$S_{5}+S_{7}=167$$
$$\Rightarrow \dfrac{5}{2} \left( 2a+\left( 5-1\right) d\right) +\dfrac{7}{2} \left( 2a+\left( 7-1\right) d\right) =167$$ [ by using formula (1)]
$$\Rightarrow \dfrac{5}{2} \left( 2a+4d\right) +\dfrac{7}{2} \left( 2a+6d\right) =167$$
$$\Rightarrow 5\left( 2a+4d\right) +7\left( 2a+6d\right) =2\times 167$$ [ Multiplying both side by 2]
$$\Rightarrow 10a+20d+14a+42d=334$$
$$\Rightarrow 24a+62d=334$$
$$\Rightarrow 12a+31d=167$$.....(1) [dividing both side by 2]
Now the second condition,
$$S_{10}=235$$
$$\Rightarrow \dfrac{10}{2} \left( 2a+\left( 10-1\right) d\right) =235$$
$$\Rightarrow 5\left( 2a+9d\right) =235$$
$$\Rightarrow \left( 2a+9d\right) =\dfrac{235}{5}$$
$$\Rightarrow \left( 2a+9d\right) =47$$.......(2)
Equation (1) and (2) are the pair of linear equations, so we are going to solve it by substitution method.
From equation (1),
$$12a+31d=167$$
$$\Rightarrow 12a=167-31d$$
$$\Rightarrow a=\dfrac{167-31d}{12}$$
Now substituting the value of ‘a’ in the equation (2), we get,
$$ 2a+9d=47$$
$$\Rightarrow 2\left( \dfrac{167-31d}{12} \right) +9d=47$$
$$\Rightarrow \dfrac{167-31d}{6} +9d=47$$
$$\Rightarrow 167-31d+6\times 9d=6\times 47$$ [multiplying both side by 6]
$$\Rightarrow 167-31d+54d=282$$
$$\Rightarrow 23d=282-167$$
$$\Rightarrow 23d=115$$
$$\Rightarrow d=\dfrac{115}{23}$$
$$\Rightarrow d=5$$
Now putting the value of ‘d’ in equation (2), we get,
$$2a+9\times 5=47$$
$$\Rightarrow 2a+45=47$$
$$\Rightarrow 2a=47-45$$
$$\Rightarrow 2a=2$$
$$\Rightarrow a=1$$
Therefore, the terms of the given AP is,
a, a+d, a+2d, a+3d,...
$\Rightarrow$ 1, 1+5, 1+2$\times 5$, 1+3$\times 5$,...
$\Rightarrow$ 1, 6, 11, 16, …
Note: So in order to find the A.P, you need to find the first term and common difference of the A.P , because if you know the first term ‘a’ and common difference ‘d’ then you can easily write the each term of A.P, i.e, a, a+d, a+2d, a+3d,...
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

