
In an accelerator experiment on high-energy collisions of electrons with positrons, a certain event is interpreted as the annihilation of an electron-positron pair of total energy $10.2BeV$ into two $\gamma $–rays of equal energy. What is the wavelength associated with each $\gamma $–rays?$(1BeV = {10^9}eV)$
Answer
557.7k+ views
Hint: The total energy of the electron-positron pair is given and it is equal to the energy of two $\gamma $–rays. So you can find the energy of one $\gamma$–ray. Must represent the energy in the Joule unit. To find the wavelength associated with each $\gamma $–ray, use the relation between the energy and wavelength of a particle.
Formula used:
The energy of each $\gamma $–ray, $E' = \dfrac{E}{2}$
Where $E$ =The total energy of electron-positron pair =energy of two $\gamma $–rays
$E$ = $\dfrac{{hc}}{\lambda }$
Where $h$= the Planck’s constant.
$c$= the speed of light,
$\lambda $= the wavelength associated with each $\gamma $–ray.
Complete step by step answer:
The high energy collision between the electron and positron in a high accelerator experiment results in an interpretation of an event as the annihilation of an electron-positron pair.
The total energy of the electron-positron pair = $E$
Given, $E = 10.2BeV$
Since, $1BeV = {10^9}eV$and $1eV = 1.6 \times {10^{ - 19}}J$
$\therefore E = 10.2 \times {10^9} \times 1.6 \times {10^{ - 19}}J$
On multiplying the terms and we get,
$ \Rightarrow E = 16.32 \times {10^{ - 10}}J$
This energy is equal to the energy of two $\gamma $–rays.
Hence, The energy of each $\gamma $–ray, $E' = \dfrac{E}{2}$
$ \Rightarrow E' = \dfrac{{16.32 \times {{10}^{ - 10}}}}{2}$
Let us divide the terms and we get
$ \Rightarrow E' = 8.16 \times {10^{ - 10}}J$
Now, we know the relation between the energy of a photon with its wavelength is, $E = \dfrac{{hc}}{\lambda }$
Where $h$= the Planck’s constant = $6.625 \times {10^{ - 34}}Js$
$c$= the speed of light =$3 \times {10^8}m/s$
Hence, if the wavelength associated with each $\gamma $–rays is $\lambda $,
$\therefore \lambda = \dfrac{{hc}}{{E'}}$
$ \Rightarrow \lambda = \dfrac{{6.625 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{8.16 \times {{10}^{ - 10}}}}$
On simplifying we get, $ \Rightarrow \lambda = 2.43 \times {10^{ - 16}}m$.
Additional information:
$\gamma $–ray is an electromagnetic wave like the visible light; the speed of $\gamma $–ray is equal to the speed of light in any medium. The wavelength of $\gamma $–ray is in the range of $1{A^0}$ to ${10^{ - 2}}{A^0}$. There is no effect of the electric field or magnetic field on the path of $\gamma $–ray.
Note: Here we use the energy- wavelength equation of a photon particle to calculate the wavelength associated with the gamma-ray and also put the value of the energy of each gamma-ray in the position of energy. This is because according to quantum theory $\gamma $–a ray is the flow of photon particles with very high energy. The energy can be up to a few Mega Electron Volts ($MeV$).
Formula used:
The energy of each $\gamma $–ray, $E' = \dfrac{E}{2}$
Where $E$ =The total energy of electron-positron pair =energy of two $\gamma $–rays
$E$ = $\dfrac{{hc}}{\lambda }$
Where $h$= the Planck’s constant.
$c$= the speed of light,
$\lambda $= the wavelength associated with each $\gamma $–ray.
Complete step by step answer:
The high energy collision between the electron and positron in a high accelerator experiment results in an interpretation of an event as the annihilation of an electron-positron pair.
The total energy of the electron-positron pair = $E$
Given, $E = 10.2BeV$
Since, $1BeV = {10^9}eV$and $1eV = 1.6 \times {10^{ - 19}}J$
$\therefore E = 10.2 \times {10^9} \times 1.6 \times {10^{ - 19}}J$
On multiplying the terms and we get,
$ \Rightarrow E = 16.32 \times {10^{ - 10}}J$
This energy is equal to the energy of two $\gamma $–rays.
Hence, The energy of each $\gamma $–ray, $E' = \dfrac{E}{2}$
$ \Rightarrow E' = \dfrac{{16.32 \times {{10}^{ - 10}}}}{2}$
Let us divide the terms and we get
$ \Rightarrow E' = 8.16 \times {10^{ - 10}}J$
Now, we know the relation between the energy of a photon with its wavelength is, $E = \dfrac{{hc}}{\lambda }$
Where $h$= the Planck’s constant = $6.625 \times {10^{ - 34}}Js$
$c$= the speed of light =$3 \times {10^8}m/s$
Hence, if the wavelength associated with each $\gamma $–rays is $\lambda $,
$\therefore \lambda = \dfrac{{hc}}{{E'}}$
$ \Rightarrow \lambda = \dfrac{{6.625 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{8.16 \times {{10}^{ - 10}}}}$
On simplifying we get, $ \Rightarrow \lambda = 2.43 \times {10^{ - 16}}m$.
Additional information:
$\gamma $–ray is an electromagnetic wave like the visible light; the speed of $\gamma $–ray is equal to the speed of light in any medium. The wavelength of $\gamma $–ray is in the range of $1{A^0}$ to ${10^{ - 2}}{A^0}$. There is no effect of the electric field or magnetic field on the path of $\gamma $–ray.
Note: Here we use the energy- wavelength equation of a photon particle to calculate the wavelength associated with the gamma-ray and also put the value of the energy of each gamma-ray in the position of energy. This is because according to quantum theory $\gamma $–a ray is the flow of photon particles with very high energy. The energy can be up to a few Mega Electron Volts ($MeV$).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

