
In a triangle $ABC$, $\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$ according as $m$ is of the form $4n + 1$ or $4n + 3$is.
A.True
B.False
Answer
588k+ views
Hint: We know that in a triangle $ABC$ the sum of all the angles is equal to $180^\circ $ that is $A + B + C = 180^\circ $ or $\dfrac{{A + B}}{2} = 90 - \dfrac{C}{2}$. We will use the property of $\cos A$ is equal to $1 - 2{\sin ^2}\left( {\dfrac{C}{2}} \right)$. Also, we have to use the property that $\cos A + \cos B$ is equal to $2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$.
Complete step by step solution
Given:
It is given that $ABC$is a triangle.
So, we have $A + B + C = 180^\circ $, since the sum of angles of the triangle is $180^\circ $.
Our aim is to show that,
$\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$......(1)
Since, we can write the above equation in the form of,$\cos mA + \cos mB + \cos mC = 1 \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$......(2)
We will solve further by taking the left hand side and show that it is equal to the right hand side.
Now let us take $\cos mA + \cos mB + \cos mC$.
We will now use the formula that is,
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Now, on applying the above formula in $\cos mA + \cos mB + \cos mC$ we get,
$\begin{array}{l}
2\cos \left( {\dfrac{{mA + mB}}{2}} \right)\cos \left( {\dfrac{{mA - mB}}{2}} \right) + \cos mC\\
2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + \cos mC
\end{array}$
Also, let us use another formula of trigonometry that is,
$\cos 2C = 1 - 2{\sin ^2}C$
On applying the above formula in $2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + \cos mC$ we get,
$2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{{mC}}{2}} \right)$
Since it is known that $ABC$ is triangle, so we get,
$\begin{array}{l}
A + B = 180 - C\\
\dfrac{{A + B}}{2} = 90 - \dfrac{C}{2}
\end{array}$
So now let us use this in the above equation, we get,
$\begin{array}{l}
2\cos \left( {m\left( {90 - \dfrac{C}{2}} \right)} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{{mC}}{2}} \right)\\
2\cos \left( {90m - \dfrac{C}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right)
\end{array}$
Now, we will use the formula from the trigonometry, we have,
$\cos \left( {m90 - \dfrac{{mC}}{2}} \right) = \pm \sin \left( {\dfrac{{mC}}{2}} \right)$
Where, $m$ is of the form $4n + 1$, $4n + 3$.
On Substituting the above equation in $2\cos \left( {90m - \dfrac{{mC}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right)$ we get,
$ \pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right)$
Since, $\sin \left( {\dfrac{{mC}}{2}} \right)$ is common in both let us take common.
$ \pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) - \sin \left( {\dfrac{{mC}}{2}} \right)} \right) + 1$
Since, we know that $\dfrac{C}{2} = \dfrac{{A + B}}{2}$. So, we will substitute in the above equation we get,
$ \pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) - \sin \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)} \right) + 1$
Let us use the formula that is $\cos \left( A \right) - \cos \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$,
Here, in our problem $A = A - B$ and $B = A + B$ so, we get,
$\begin{array}{l}
\pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {2\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1\\
\pm 4\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1
\end{array}$
Hence, the right hand side is proved that is,$\cos mA + \cos mB + \cos mC = 1 \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$.
Here, we can see that $m$ is of the form $4n + 1$ or $4n + 3$ we get,
$\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$.
Therefore, the answer is true.
Note: We are not taking $m$ as even because $\cos \left( {m90 - \dfrac{{mC}}{2}} \right)$. For example take $m = 2$ then we get $\cos \left( {180 - \dfrac{{mC}}{2}} \right) = \cos \left( {\dfrac{{mC}}{2}} \right)$ . Here, we got $\cos $ term but in the proof all the terms should be in $\sin $. We will not get the $\sin $ term if we take $m$ as $4n$ or $4n + 2$. So the only possibilities for $m$ are $4n + 1$ and $4n + 3$.
Complete step by step solution
Given:
It is given that $ABC$is a triangle.
So, we have $A + B + C = 180^\circ $, since the sum of angles of the triangle is $180^\circ $.
Our aim is to show that,
$\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$......(1)
Since, we can write the above equation in the form of,$\cos mA + \cos mB + \cos mC = 1 \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$......(2)
We will solve further by taking the left hand side and show that it is equal to the right hand side.
Now let us take $\cos mA + \cos mB + \cos mC$.
We will now use the formula that is,
$\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Now, on applying the above formula in $\cos mA + \cos mB + \cos mC$ we get,
$\begin{array}{l}
2\cos \left( {\dfrac{{mA + mB}}{2}} \right)\cos \left( {\dfrac{{mA - mB}}{2}} \right) + \cos mC\\
2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + \cos mC
\end{array}$
Also, let us use another formula of trigonometry that is,
$\cos 2C = 1 - 2{\sin ^2}C$
On applying the above formula in $2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + \cos mC$ we get,
$2\cos \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{{mC}}{2}} \right)$
Since it is known that $ABC$ is triangle, so we get,
$\begin{array}{l}
A + B = 180 - C\\
\dfrac{{A + B}}{2} = 90 - \dfrac{C}{2}
\end{array}$
So now let us use this in the above equation, we get,
$\begin{array}{l}
2\cos \left( {m\left( {90 - \dfrac{C}{2}} \right)} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - 2{\sin ^2}\left( {\dfrac{{mC}}{2}} \right)\\
2\cos \left( {90m - \dfrac{C}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right)
\end{array}$
Now, we will use the formula from the trigonometry, we have,
$\cos \left( {m90 - \dfrac{{mC}}{2}} \right) = \pm \sin \left( {\dfrac{{mC}}{2}} \right)$
Where, $m$ is of the form $4n + 1$, $4n + 3$.
On Substituting the above equation in $2\cos \left( {90m - \dfrac{{mC}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right)$ we get,
$ \pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) + 1 - {\sin ^2}\left( {\dfrac{{mC}}{2}} \right)$
Since, $\sin \left( {\dfrac{{mC}}{2}} \right)$ is common in both let us take common.
$ \pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) - \sin \left( {\dfrac{{mC}}{2}} \right)} \right) + 1$
Since, we know that $\dfrac{C}{2} = \dfrac{{A + B}}{2}$. So, we will substitute in the above equation we get,
$ \pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\cos \left( {\dfrac{{m\left( {A - B} \right)}}{2}} \right) - \sin \left( {\dfrac{{m\left( {A + B} \right)}}{2}} \right)} \right) + 1$
Let us use the formula that is $\cos \left( A \right) - \cos \left( B \right) = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$,
Here, in our problem $A = A - B$ and $B = A + B$ so, we get,
$\begin{array}{l}
\pm 2\sin \left( {\dfrac{{mC}}{2}} \right)\left( {2\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1\\
\pm 4\sin \left( {\dfrac{{mC}}{2}} \right)\left( {\sin \left( {\dfrac{A}{2}} \right)\sin \left( {\dfrac{B}{2}} \right)} \right) + 1
\end{array}$
Hence, the right hand side is proved that is,$\cos mA + \cos mB + \cos mC = 1 \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$.
Here, we can see that $m$ is of the form $4n + 1$ or $4n + 3$ we get,
$\cos mA + \cos mB + \cos mC - 1 = \pm 4\sin \dfrac{{mA}}{2}\sin \dfrac{{mB}}{2}\sin \dfrac{{mC}}{2}$.
Therefore, the answer is true.
Note: We are not taking $m$ as even because $\cos \left( {m90 - \dfrac{{mC}}{2}} \right)$. For example take $m = 2$ then we get $\cos \left( {180 - \dfrac{{mC}}{2}} \right) = \cos \left( {\dfrac{{mC}}{2}} \right)$ . Here, we got $\cos $ term but in the proof all the terms should be in $\sin $. We will not get the $\sin $ term if we take $m$ as $4n$ or $4n + 2$. So the only possibilities for $m$ are $4n + 1$ and $4n + 3$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

