   Question Answers

# In a triangle ABC, AD is perpendicular to BC. Prove that $A{{B}^{2}}-A{{C}^{2}}=B{{D}^{2}}-C{{D}^{2}}$.   Hint: In a right-angled triangle ABC right-angled at B $A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}$. This is known as Pythagoras theorem. Use Pythagora's theorem in triangles ABD and ACD and equate $A{{D}^{2}}$. Simplify to get the above result.

Complete step by step answer: -
Given: A triangle ABC. $\text{AD}\bot \text{BC}$.
To prove : $A{{B}^{2}}-A{{C}^{2}}=B{{D}^{2}}-C{{D}^{2}}$
Proof:
Using Pythagoras theorem in triangle ABD, we get
$\text{A}{{\text{B}}^{2}}=\text{A}{{\text{D}}^{2}}+\text{B}{{\text{D}}^{2}}$
Subtracting $\text{B}{{\text{D}}^{2}}$ from both sides we get
\begin{align} & \text{A}{{\text{B}}^{2}}-\text{B}{{\text{D}}^{2}}=\text{A}{{\text{D}}^{2}}+\text{B}{{\text{D}}^{2}}-\text{B}{{\text{D}}^{2}} \\ & \Rightarrow \text{A}{{\text{B}}^{2}}-\text{B}{{\text{D}}^{2}}=\text{A}{{\text{D}}^{2}}\text{ (i)} \\ \end{align}
Similarly, using Pythagoras theorem in triangle ACD, we get
$\text{A}{{\text{C}}^{2}}=\text{A}{{\text{D}}^{2}}+\text{C}{{\text{D}}^{2}}$
Subtracting $\text{C}{{\text{D}}^{2}}$ from both sides, we get
\begin{align} & \text{A}{{\text{C}}^{2}}-\text{C}{{\text{D}}^{2}}=\text{A}{{\text{D}}^{2}}+\text{C}{{\text{D}}^{2}}-\text{C}{{\text{D}}^{2}} \\ & \Rightarrow \text{A}{{\text{C}}^{2}}-\text{C}{{\text{D}}^{2}}=\text{A}{{\text{D}}^{2}}\text{ (ii)} \\ \end{align}
From equation (i) and equation (ii), we get
$\text{A}{{\text{B}}^{2}}-\text{B}{{\text{D}}^{2}}=\text{A}{{\text{C}}^{2}}-\text{C}{{\text{D}}^{2}}$
Adding $\text{B}{{\text{D}}^{2}}-\text{A}{{\text{C}}^{2}}$ on both sides, we get
\begin{align} & \text{A}{{\text{B}}^{2}}-\text{B}{{\text{D}}^{2}}+\text{B}{{\text{D}}^{2}}-\text{A}{{\text{C}}^{2}}=\text{A}{{\text{C}}^{2}}-\text{C}{{\text{D}}^{2}}+\text{B}{{\text{D}}^{2}}-\text{A}{{\text{C}}^{2}} \\ & \Rightarrow \text{A}{{\text{B}}^{2}}-\text{A}{{\text{C}}^{2}}=\text{B}{{\text{D}}^{2}}-\text{C}{{\text{D}}^{2}} \\ \end{align}
Hence proved.

Note: Alternatively, we can use trigonometry to prove the above statement
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine,
tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
If $\text{A}{{\text{B}}^{2}}-\text{A}{{\text{C}}^{2}}=\text{B}{{\text{D}}^{2}}-\text{C}{{\text{D}}^{2}}$ then on dividing both sides by $\text{A}{{\text{D}}^{2}}$ we get
$\dfrac{\text{A}{{\text{B}}^{2}}-\text{A}{{\text{C}}^{2}}}{\text{A}{{\text{D}}^{2}}}=\dfrac{\text{B}{{\text{D}}^{2}}-\text{C}{{\text{D}}^{2}}}{\text{A}{{\text{D}}^{2}}}$
We know that $\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}$.
Using the above identity, we get
${{\left( \dfrac{\text{AB}}{\text{AD}} \right)}^{2}}-{{\left( \dfrac{\text{AC}}{\text{AD}} \right)}^{2}}={{\left( \dfrac{\text{BD}}{\text{AD}} \right)}^{2}}-{{\left( \dfrac{\text{CD}}{\text{AD}} \right)}^{2}}$
In triangle ABD we have
$\csc \text{B=}\dfrac{\text{AB}}{\text{AD}}$ and $\cot \text{B=}\dfrac{\text{BD}}{\text{AD}}$
In triangle ACD we have
$\csc \text{C=}\dfrac{\text{AC}}{\text{AD}}$ and $\cot \text{C=}\dfrac{\text{CD}}{\text{AD}}$
Substituting these values, we get
${{\csc }^{2}}\text{B-}{{\csc }^{2}}\text{C=}{{\cot }^{2}}\text{B-}{{\cot }^{2}}\text{C}$
Adding ${{\csc }^{2}}\text{C-co}{{\text{t}}^{2}}\text{B}$ on both sides, we get
\begin{align} & {{\csc }^{2}}\text{B-}{{\csc }^{2}}\text{C+}{{\csc }^{2}}\text{C-co}{{\text{t}}^{2}}\text{B=}{{\cot }^{2}}\text{B-}{{\cot }^{2}}\text{C+}{{\csc }^{2}}\text{C-co}{{\text{t}}^{2}}\text{B} \\ & {{\csc }^{2}}\text{B}-{{\cot }^{2}}\text{B=}{{\csc }^{2}}\text{C-}{{\cot }^{2}}\text{C} \\ \end{align}
We know that ${{\csc }^{2}}x-{{\cot }^{2}}x=1$
Using we have $1=1$
Which is true.
Hence $\text{A}{{\text{B}}^{2}}-\text{A}{{\text{C}}^{2}}=\text{B}{{\text{D}}^{2}}-\text{C}{{\text{D}}^{2}}$
Hence proved.
Right Angled Triangle Constructions  The Difference Between an Animal that is A Regulator and One that is A Conformer  Where There is a Will There is a Way Essay  CBSE Class 10 Maths Chapter 6 - Triangles Formula  Laughter is a Best Medicine Essay  CBSE Class 7 Maths Chapter 6 - Triangle and Its Properties Formulas  Group Theory in Mathematics  CBSE Class 10 Maths Chapter 8 - Introduction to Trigonometry Formula  IMO Maths Olympiad Sample Question Paper for Class 6 to 10  How To Make A Buzzer?  Important Questions for CBSE Class 10 Maths Chapter 8 - Introduction to Trigonometry  Important Questions for CBSE Class 10 Maths Chapter 12 - Areas Related to Circles  Important Questions for CBSE Class 10 Maths Chapter 6 - Triangles  Important Questions for CBSE Class 8 English Honeydew Chapter 7 - A Visit to Cambridge  Important Questions for CBSE Class 6 English A Pact with The Sun Chapter 10 - A Strange Wrestling Match  Important Questions for CBSE Class 10 Maths Chapter 10 - Circles    Important Questions for CBSE Class 11 Physics Chapter 4 - Motion in a Plane  Important Questions for CBSE Class 10 Maths, Chapter wise Questions with Answers  NCERT Books for Class 10 Maths  CBSE Class 10 Hindi A Question Paper 2020  Hindi A Class 10 CBSE Question Paper 2009  Hindi A Class 10 CBSE Question Paper 2015  Hindi A Class 10 CBSE Question Paper 2008  Hindi A Class 10 CBSE Question Paper 2014  Hindi A Class 10 CBSE Question Paper 2016  Hindi A Class 10 CBSE Question Paper 2012  Hindi A Class 10 CBSE Question Paper 2010  Hindi A Class 10 CBSE Question Paper 2007  Hindi A Class 10 CBSE Question Paper 2013  RS Aggarwal Class 9 Solutions Chapter-9 Congruence of Triangles and Inequalities in a Triangle  NCERT Solutions for Class 10 Maths Chapter 6 Triangles  NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry in Hindi  RS Aggarwal Class 10 Solutions - Triangles  NCERT Solutions for Class 10 Maths Chapter 12 Areas Related to Circles in Hindi  RD Sharma Solutions for Class 9 Maths Chapter 10 - Congruent Triangles  RD Sharma Solutions for Class 10 Maths Chapter 4 - Triangles  NCERT Solutions for Class 10 English First Flight Chapter 1 - A Letter to God  NCERT Solutions for Class 10 Maths Chapter 6 Triangles in Hindi  NCERT Solutions for Class 7 Maths Chapter 6 The Triangle and Its Properties In Hindi  