
In a triangle ABC, $a-2b+c=0$. The value of $\cot \left( \dfrac{A}{2} \right)\cot \left( \dfrac{C}{2} \right)$ is
(a) $\dfrac{9}{2}$
(b) $3$
(c) $\dfrac{3}{2}$
(d) $1$
Answer
615k+ views
Hint:Write $\cot \theta $ in the form of $\dfrac{\cos \theta }{\sin \theta }$. Find the relation between the angles A and C of the triangle, using the given information. Convert the angles in their half angle form, by using the expansion formula of sum of two angles of sine and cosine, to get the answer.
Complete step-by-step answer:
We know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$. Therefore, writing the given expression in this form, we get,
$\cot \left( \dfrac{A}{2} \right)\cot \left( \dfrac{C}{2} \right)$$=\dfrac{\cos \left( \dfrac{A}{2} \right)}{\sin \left( \dfrac{A}{2} \right)}\times \dfrac{\cos \left( \dfrac{C}{2} \right)}{\sin \left( \dfrac{C}{2} \right)}=\dfrac{\cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)}{\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)}.................(i)$
Now, we have been given that: $a-2b+c=0$.
The relation between any side of a triangle and sine of the angle lying opposite to it is given by: $a=2R\sin A$, where $a=$ side of the triangle, $A=$ angle opposite to that of side $a$, and $R=$ radius of the circumcircle of the triangle.
$\begin{align}
& \because a-2b+c=0 \\
& \therefore a+c=2b \\
\end{align}$
Now, converting the given relation into its sine form, we get,
$2R\sin A+2R\sin C=2\times 2R\sin B$
Removing the common term from both sides we get,
$\sin A+\sin C=2\operatorname{Sin}B$
We know that, in a triangle: $A+B+C={{180}^{\circ }}$. Therefore,$B={{180}^{\circ }}-(A+C)$
$\Rightarrow \sin A+\sin C=2\sin ({{180}^{\circ }}-(A+C))$
We know that, $\sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta $. Therefore,
$\sin A+\sin C=2\sin (A+C)$
Now, applying the formula $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ in the L.H.S and $\sin 2\theta =2\sin \theta \cos \theta $ i.e converting into half angle form $\sin \theta =2\sin (\dfrac{\theta}{2}) \cos (\dfrac{\theta}{2}) $ in the R.H.S, we get,
$2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\times 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A+C}{2} \right)$
Cancelling the common terms we get,
$\cos \left( \dfrac{A-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)$
Applying the formula, $\cos (a\pm b)=\cos a\cos b\mp \sin a\sin b$, we have,
$\begin{align}
& \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)+\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)=2\left( \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)-\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right) \right) \\
& \Rightarrow \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)+\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)=2\cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)-2\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right) \\
& \Rightarrow \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)=3\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right) \\
& \Rightarrow \dfrac{\cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)}{\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)}=\cot \left( \dfrac{A}{2} \right)\cot \left( \dfrac{C}{2} \right)=3 \\
\end{align}$
Therefore, the value of the expression (i) is 3.
Hence, option (b) is the correct answer.
Note: While solving the problems of ‘properties of a triangle’ always keep all the formulas in mind. Here, in the above solution we have changed the term that contains angle B into the term that contains angles A and C because the expression $\cot \left( \dfrac{A}{2} \right)\cot \left( \dfrac{C}{2} \right)$ does not contain angle B.Students should remember all the trigonometric identities and formulas for solving these types of questions and also the relation between any side of a triangle and sine of the angle lying opposite to it i.e $a=2R\sin A$ , $b=2R\sin B$, $c=2R\sin C$.
Complete step-by-step answer:
We know that $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$. Therefore, writing the given expression in this form, we get,
$\cot \left( \dfrac{A}{2} \right)\cot \left( \dfrac{C}{2} \right)$$=\dfrac{\cos \left( \dfrac{A}{2} \right)}{\sin \left( \dfrac{A}{2} \right)}\times \dfrac{\cos \left( \dfrac{C}{2} \right)}{\sin \left( \dfrac{C}{2} \right)}=\dfrac{\cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)}{\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)}.................(i)$
Now, we have been given that: $a-2b+c=0$.
The relation between any side of a triangle and sine of the angle lying opposite to it is given by: $a=2R\sin A$, where $a=$ side of the triangle, $A=$ angle opposite to that of side $a$, and $R=$ radius of the circumcircle of the triangle.
$\begin{align}
& \because a-2b+c=0 \\
& \therefore a+c=2b \\
\end{align}$
Now, converting the given relation into its sine form, we get,
$2R\sin A+2R\sin C=2\times 2R\sin B$
Removing the common term from both sides we get,
$\sin A+\sin C=2\operatorname{Sin}B$
We know that, in a triangle: $A+B+C={{180}^{\circ }}$. Therefore,$B={{180}^{\circ }}-(A+C)$
$\Rightarrow \sin A+\sin C=2\sin ({{180}^{\circ }}-(A+C))$
We know that, $\sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta $. Therefore,
$\sin A+\sin C=2\sin (A+C)$
Now, applying the formula $\sin a+\sin b=2\sin \left( \dfrac{a+b}{2} \right)\cos \left( \dfrac{a-b}{2} \right)$ in the L.H.S and $\sin 2\theta =2\sin \theta \cos \theta $ i.e converting into half angle form $\sin \theta =2\sin (\dfrac{\theta}{2}) \cos (\dfrac{\theta}{2}) $ in the R.H.S, we get,
$2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A-C}{2} \right)=2\times 2\sin \left( \dfrac{A+C}{2} \right)\cos \left( \dfrac{A+C}{2} \right)$
Cancelling the common terms we get,
$\cos \left( \dfrac{A-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)$
Applying the formula, $\cos (a\pm b)=\cos a\cos b\mp \sin a\sin b$, we have,
$\begin{align}
& \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)+\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)=2\left( \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)-\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right) \right) \\
& \Rightarrow \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)+\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)=2\cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)-2\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right) \\
& \Rightarrow \cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)=3\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right) \\
& \Rightarrow \dfrac{\cos \left( \dfrac{A}{2} \right)\cos \left( \dfrac{C}{2} \right)}{\sin \left( \dfrac{A}{2} \right)\sin \left( \dfrac{C}{2} \right)}=\cot \left( \dfrac{A}{2} \right)\cot \left( \dfrac{C}{2} \right)=3 \\
\end{align}$
Therefore, the value of the expression (i) is 3.
Hence, option (b) is the correct answer.
Note: While solving the problems of ‘properties of a triangle’ always keep all the formulas in mind. Here, in the above solution we have changed the term that contains angle B into the term that contains angles A and C because the expression $\cot \left( \dfrac{A}{2} \right)\cot \left( \dfrac{C}{2} \right)$ does not contain angle B.Students should remember all the trigonometric identities and formulas for solving these types of questions and also the relation between any side of a triangle and sine of the angle lying opposite to it i.e $a=2R\sin A$ , $b=2R\sin B$, $c=2R\sin C$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

