
in a right-angle triangle \[{\text{ABC}}\] where right angle at \[{\text{C}}\], \[{\text{BC + CA = 23}}\;{\text{cm}}\] and \[{\text{BC}} - {\text{CA = 7}}\;{\text{cm}}\]. Then find $\sin {\text{A}}$ and $\tan {\text{B}}$ .
Answer
598.5k+ views
Hint: Find the value of \[{\text{BC}}\] or \[{\text{CA}}\] by cancellation law apply on those equations, draw a right-angle triangle and also find the value of \[{\text{AB}}\] by Pythagoras theorem then use the formulas of \[\sin \;{\text{A}}\;{\text{and tan}}\;{\text{B}}\].
Complete step-by-step solution:
Given: The provided first equation is \[{\text{BC + CA = 23}}\;{\text{cm}}\] and \[{\text{BC - CA}} = 7cm\]
First, we will find the values of BC and CA by the two given equations.
Now, subtract \[{\text{CA}}\] from the both sides in equation \[{\text{BC + CA = 23}}\;{\text{cm}}\]
\[
{\text{BC + CA}}\; - {\text{CA = 23}}\; - {\text{CA}} \\
{\text{BC = 23}}\; - {\text{CA}} \\
\]
Put the value \[{\text{BC}}\]in the second equation\[{\text{BC}}\; - {\text{CA = 7}}\;{\text{cm}}\]as:
\[23 - {\text{CA}}\; - {\text{CA = 7}}\;{\text{cm}}\]
Solve further,
\[
- 2{\text{CA}}\;{\text{ = 7}}\; - 23 \\
{\text{CA}} = 8\;{\text{cm}} \\
\]
For the value of \[{\text{BC}}\]put the value of \[{\text{CA}}\]in \[{\text{BC = 23}}\; - {\text{CA}}\],
\[
{\text{BC = 23}}\; - 8 \\
{\text{BC = }}15\;{\text{cm}} \\
\]
Now draw a right angle triangle whose sides are\[{\text{CA}} = 8\;{\text{cm}}\]and \[{\text{BC = }}15\;{\text{cm}}\]and then we have to find the value of \[{\text{AB}}\] by rule of Pythagoras theorem,
Pythagoras rule: \[{\left( {{\text{base}}} \right)^2} + {\left( {{\text{height}}} \right)^2} = {\left( {{\text{hypotenuse}}} \right)^2}\]
base\[{\text{BC = }}15\;{\text{cm}}\],height\[{\text{CA}} = 8\;{\text{cm}}\]now use Pythagoras theorem,
\[
{\left( {{\text{base}}} \right)^2} + {\left( {{\text{height}}} \right)^2} = {\left( {{\text{hypotenuse}}} \right)^2} \\
{\left( {{\text{CB}}} \right)^2} + {\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} \\
{\left( {15} \right)^2} + {\left( 8 \right)^2} = {\left( {{\text{AB}}} \right)^2} \\
225 + 64 = {\left( {{\text{AB}}} \right)^2} \\
\]
Furthermore,
\[
289 = {\left( {{\text{AB}}} \right)^2} \\
\left( {{\text{AB}}} \right) = \sqrt {289} \\
\left( {{\text{AB}}} \right) = 17 \\
\]
Now we have base, height and hypotenuse so we solve for the values of \[\sin \;{\text{A}}\;{\text{and tan}}\;{\text{B}}\].
First solve for $\sin {\text{A}}$ .
\[
\sin \;{\text{A}} = \dfrac{{{\text{base}}}}{{{\text{hypothesis}}}} \\
\sin \;{\text{A}} = \dfrac{{{\text{BC}}}}{{{\text{AB}}}} \\
\sin \;{\text{A}} = \dfrac{{15\;cm}}{{17\;cm}} \\
\]
Now solve for \[{\text{tan}}\;{\text{B}}\];
\[
\tan \;{\text{B}} = \dfrac{{{\text{height}}}}{{{\text{base}}}} \\
\tan \;{\text{B}} = \dfrac{{{\text{AC}}}}{{{\text{BC}}}} \\
\tan \;{\text{B}} = \dfrac{{8\;cm}}{{15\;cm}} \\
\]
Thus, the values of \[\sin \;{\text{A}} = \dfrac{{15\;cm}}{{17\;cm}}\] and \[\tan \;{\text{B}} = \dfrac{{8\;cm}}{{15\;cm}}\].
Note: First find all the three sides of a right angle triangle and then find $\sin {\text{A}}$ and $\tan {\text{B}}$ by using the properties of the triangle .
Complete step-by-step solution:
Given: The provided first equation is \[{\text{BC + CA = 23}}\;{\text{cm}}\] and \[{\text{BC - CA}} = 7cm\]
First, we will find the values of BC and CA by the two given equations.
Now, subtract \[{\text{CA}}\] from the both sides in equation \[{\text{BC + CA = 23}}\;{\text{cm}}\]
\[
{\text{BC + CA}}\; - {\text{CA = 23}}\; - {\text{CA}} \\
{\text{BC = 23}}\; - {\text{CA}} \\
\]
Put the value \[{\text{BC}}\]in the second equation\[{\text{BC}}\; - {\text{CA = 7}}\;{\text{cm}}\]as:
\[23 - {\text{CA}}\; - {\text{CA = 7}}\;{\text{cm}}\]
Solve further,
\[
- 2{\text{CA}}\;{\text{ = 7}}\; - 23 \\
{\text{CA}} = 8\;{\text{cm}} \\
\]
For the value of \[{\text{BC}}\]put the value of \[{\text{CA}}\]in \[{\text{BC = 23}}\; - {\text{CA}}\],
\[
{\text{BC = 23}}\; - 8 \\
{\text{BC = }}15\;{\text{cm}} \\
\]
Now draw a right angle triangle whose sides are\[{\text{CA}} = 8\;{\text{cm}}\]and \[{\text{BC = }}15\;{\text{cm}}\]and then we have to find the value of \[{\text{AB}}\] by rule of Pythagoras theorem,
Pythagoras rule: \[{\left( {{\text{base}}} \right)^2} + {\left( {{\text{height}}} \right)^2} = {\left( {{\text{hypotenuse}}} \right)^2}\]
base\[{\text{BC = }}15\;{\text{cm}}\],height\[{\text{CA}} = 8\;{\text{cm}}\]now use Pythagoras theorem,
\[
{\left( {{\text{base}}} \right)^2} + {\left( {{\text{height}}} \right)^2} = {\left( {{\text{hypotenuse}}} \right)^2} \\
{\left( {{\text{CB}}} \right)^2} + {\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} \\
{\left( {15} \right)^2} + {\left( 8 \right)^2} = {\left( {{\text{AB}}} \right)^2} \\
225 + 64 = {\left( {{\text{AB}}} \right)^2} \\
\]
Furthermore,
\[
289 = {\left( {{\text{AB}}} \right)^2} \\
\left( {{\text{AB}}} \right) = \sqrt {289} \\
\left( {{\text{AB}}} \right) = 17 \\
\]
Now we have base, height and hypotenuse so we solve for the values of \[\sin \;{\text{A}}\;{\text{and tan}}\;{\text{B}}\].
First solve for $\sin {\text{A}}$ .
\[
\sin \;{\text{A}} = \dfrac{{{\text{base}}}}{{{\text{hypothesis}}}} \\
\sin \;{\text{A}} = \dfrac{{{\text{BC}}}}{{{\text{AB}}}} \\
\sin \;{\text{A}} = \dfrac{{15\;cm}}{{17\;cm}} \\
\]
Now solve for \[{\text{tan}}\;{\text{B}}\];
\[
\tan \;{\text{B}} = \dfrac{{{\text{height}}}}{{{\text{base}}}} \\
\tan \;{\text{B}} = \dfrac{{{\text{AC}}}}{{{\text{BC}}}} \\
\tan \;{\text{B}} = \dfrac{{8\;cm}}{{15\;cm}} \\
\]
Thus, the values of \[\sin \;{\text{A}} = \dfrac{{15\;cm}}{{17\;cm}}\] and \[\tan \;{\text{B}} = \dfrac{{8\;cm}}{{15\;cm}}\].
Note: First find all the three sides of a right angle triangle and then find $\sin {\text{A}}$ and $\tan {\text{B}}$ by using the properties of the triangle .
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

