
In a parallelogram ABCD, measure of angle D is 115 degree. Determine the measure of angle A and angle B.
Answer
601.2k+ views
Hint: Use the facts that the opposite angles of a parallelogram are equal and the sum of the adjacent angles is 180 degrees.
Complete step-by-step answer:
We know that the parallelogram is a quadrilateral with two pairs of parallel sides. The opposite sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
The measure of angle D is given to us. That is:
$\angle D={{115}^{\circ }}$
We need to find out the measure of angle B and angle A.
As we can see that angle B is the opposite angle of angle D,
$\angle B=\angle D={{115}^{\circ }}$
Sum of the adjacent angles of a parallelogram is 180 degrees.
Here the adjacent angle of B is angle A. Therefore,
$\angle B+\angle A={{180}^{\circ }}$
$\Rightarrow {{115}^{\circ }}+\angle A={{180}^{\circ }}$
$\Rightarrow \angle A={{180}^{\circ }}-{{115}^{\circ }}={{65}^{\circ }}$
Therefore,
$\angle A={{65}^{\circ }},\angle B={{115}^{\circ }}$
Measure of angle A is 65 degree and the measure of angle B is 115 degree.
Note: Alternatively, at first we can find out the measure of angle C, by using the fact that the sum of adjacent angles of a parallelogram is 180 degrees. Then find out the measure of angle A, as angle A is the opposite angle of angle C.
Complete step-by-step answer:
We know that the parallelogram is a quadrilateral with two pairs of parallel sides. The opposite sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
The measure of angle D is given to us. That is:
$\angle D={{115}^{\circ }}$
We need to find out the measure of angle B and angle A.
As we can see that angle B is the opposite angle of angle D,
$\angle B=\angle D={{115}^{\circ }}$
Sum of the adjacent angles of a parallelogram is 180 degrees.
Here the adjacent angle of B is angle A. Therefore,
$\angle B+\angle A={{180}^{\circ }}$
$\Rightarrow {{115}^{\circ }}+\angle A={{180}^{\circ }}$
$\Rightarrow \angle A={{180}^{\circ }}-{{115}^{\circ }}={{65}^{\circ }}$
Therefore,
$\angle A={{65}^{\circ }},\angle B={{115}^{\circ }}$
Measure of angle A is 65 degree and the measure of angle B is 115 degree.
Note: Alternatively, at first we can find out the measure of angle C, by using the fact that the sum of adjacent angles of a parallelogram is 180 degrees. Then find out the measure of angle A, as angle A is the opposite angle of angle C.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

