
In a group of 13 cricket players four are bowlers find out in how many ways can they form a cricket team of 11 players in which at least 2 bowlers are in included
A.55
B.72
C.78
D.None of these
Answer
589.2k+ views
Hint- In this question we use the theory of permutation and combination. So, before solving this question we need to first recall the basics of this chapter. For example, if we need to select 2 players out of four. Then in this case, this can be done in${}^{\text{4}}{{\text{C}}_2}$ =6 ways.
Complete step-by-step answer:
Now, as given in the question,
13 cricket players and 4 bowlers are available and we need to select 11 players in such a way at least two bowlers.
Remaining players = 13-4=09
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Total ways = select two bowlers + select three bowlers + select four bowlers
= ${}^9{C_9} \times {}^4{C_2} + {}^9{C_8} \times {}^4{C_3} + {}^9{C_7} \times {}^4{C_4}$
= 6+36+36
= 78
Therefore, a total of 78 ways can form a cricket team of 11 players in which at least 2 bowlers are included.
Thus, option (C) is the correct answer.
Note- We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Complete step-by-step answer:
Now, as given in the question,
13 cricket players and 4 bowlers are available and we need to select 11 players in such a way at least two bowlers.
Remaining players = 13-4=09
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Total ways = select two bowlers + select three bowlers + select four bowlers
= ${}^9{C_9} \times {}^4{C_2} + {}^9{C_8} \times {}^4{C_3} + {}^9{C_7} \times {}^4{C_4}$
= 6+36+36
= 78
Therefore, a total of 78 ways can form a cricket team of 11 players in which at least 2 bowlers are included.
Thus, option (C) is the correct answer.
Note- We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

