
In a group of 13 cricket players four are bowlers find out in how many ways can they form a cricket team of 11 players in which at least 2 bowlers are in included
A.55
B.72
C.78
D.None of these
Answer
539.1k+ views
Hint- In this question we use the theory of permutation and combination. So, before solving this question we need to first recall the basics of this chapter. For example, if we need to select 2 players out of four. Then in this case, this can be done in${}^{\text{4}}{{\text{C}}_2}$ =6 ways.
Complete step-by-step answer:
Now, as given in the question,
13 cricket players and 4 bowlers are available and we need to select 11 players in such a way at least two bowlers.
Remaining players = 13-4=09
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Total ways = select two bowlers + select three bowlers + select four bowlers
= ${}^9{C_9} \times {}^4{C_2} + {}^9{C_8} \times {}^4{C_3} + {}^9{C_7} \times {}^4{C_4}$
= 6+36+36
= 78
Therefore, a total of 78 ways can form a cricket team of 11 players in which at least 2 bowlers are included.
Thus, option (C) is the correct answer.
Note- We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Complete step-by-step answer:
Now, as given in the question,
13 cricket players and 4 bowlers are available and we need to select 11 players in such a way at least two bowlers.
Remaining players = 13-4=09
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Total ways = select two bowlers + select three bowlers + select four bowlers
= ${}^9{C_9} \times {}^4{C_2} + {}^9{C_8} \times {}^4{C_3} + {}^9{C_7} \times {}^4{C_4}$
= 6+36+36
= 78
Therefore, a total of 78 ways can form a cricket team of 11 players in which at least 2 bowlers are included.
Thus, option (C) is the correct answer.
Note- We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
