
In a group of 13 cricket players four are bowlers find out in how many ways can they form a cricket team of 11 players in which at least 2 bowlers are in included
A.55
B.72
C.78
D.None of these
Answer
589.8k+ views
Hint- In this question we use the theory of permutation and combination. So, before solving this question we need to first recall the basics of this chapter. For example, if we need to select 2 players out of four. Then in this case, this can be done in${}^{\text{4}}{{\text{C}}_2}$ =6 ways.
Complete step-by-step answer:
Now, as given in the question,
13 cricket players and 4 bowlers are available and we need to select 11 players in such a way at least two bowlers.
Remaining players = 13-4=09
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Total ways = select two bowlers + select three bowlers + select four bowlers
= ${}^9{C_9} \times {}^4{C_2} + {}^9{C_8} \times {}^4{C_3} + {}^9{C_7} \times {}^4{C_4}$
= 6+36+36
= 78
Therefore, a total of 78 ways can form a cricket team of 11 players in which at least 2 bowlers are included.
Thus, option (C) is the correct answer.
Note- We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Complete step-by-step answer:
Now, as given in the question,
13 cricket players and 4 bowlers are available and we need to select 11 players in such a way at least two bowlers.
Remaining players = 13-4=09
As we know, ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Total ways = select two bowlers + select three bowlers + select four bowlers
= ${}^9{C_9} \times {}^4{C_2} + {}^9{C_8} \times {}^4{C_3} + {}^9{C_7} \times {}^4{C_4}$
= 6+36+36
= 78
Therefore, a total of 78 ways can form a cricket team of 11 players in which at least 2 bowlers are included.
Thus, option (C) is the correct answer.
Note- We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

