
In a four-dimensional space where unit vectors along the axes are \[\hat{i},\hat{j},\hat{k}\text{ and }\hat{l}\] , and \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},{{\vec{a}}_{4}}\] are four non-zero vectors such that no vector can be expressed as linear combination of others and \[\left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{\vec{a}}_{3}}+\delta {{\vec{a}}_{4}}=0\] , then
(A) \[\lambda =1\]
(B) \[\mu =\dfrac{-2}{3}\]
(C) \[\gamma =\dfrac{2}{3}\]
(D) \[\delta =\dfrac{1}{3}\]
Answer
584.4k+ views
Hint: As no vector can be expressed as the linear combination of \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\] and \[{{\vec{a}}_{4}}\] . It means the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\] and \[{{\vec{a}}_{4}}\] are independent of each other. Our given equation is \[\left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{\vec{a}}_{3}}+\delta {{\vec{a}}_{4}}=0\] . The RHS of the equation is equal to zero. So, LHS must also be equal to zero. The only way to get the LHS equal to zero is to make the coefficients of the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\text{ and }{{\vec{a}}_{4}}\] in the above expression equal to zero. The coefficient of \[{{\vec{a}}_{1}}\] is \[\left( \lambda -1 \right)\] . The coefficient of \[{{\vec{a}}_{2}}\] is \[-\left( \lambda -1 \right)+\mu -2\gamma =\left( 1-\lambda \right)+\mu -2\gamma \]. The coefficient of \[{{\vec{a}}_{3}}\] is \[\left( \mu +\gamma +1 \right)\]. The coefficient of \[{{\vec{a}}_{4}}\] is \[\left( \gamma +\delta \right)\]. Now, make these coefficients equal to zero and solve it further.
Complete step-by-step answer:
According to the question it is given that the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},{{\vec{a}}_{4}}\] are four non-zero vectors such that no vector can be expressed as linear combination of others and \[\left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{\vec{a}}_{3}}+\delta {{\vec{a}}_{4}}=0\] …………………………(1)
It is given that no any vectors out of \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\text{ and }{{\vec{a}}_{4}}\] can be expressed as linear combination of others. It means that the vector \[{{\vec{a}}_{1}}\] can be expressed without the using the vectors \[{{\vec{a}}_{2}}\] , \[{{\vec{a}}_{3}}\] , and \[{{\vec{a}}_{4}}\] . In the same way, the vector \[{{\vec{a}}_{2}}\] can be expressed without the using the vectors \[{{\vec{a}}_{1}}\] , \[{{\vec{a}}_{3}}\] , and \[{{\vec{a}}_{4}}\] . We can also say that the vector \[{{\vec{a}}_{3}}\] can be expressed without the using the vectors \[{{\vec{a}}_{1}}\] , \[{{\vec{a}}_{2}}\] , and \[{{\vec{a}}_{4}}\] . Similarly, the vector \[{{\vec{a}}_{4}}\] can be expressed without the using the vectors \[{{\vec{a}}_{1}}\] , \[{{\vec{a}}_{2}}\] , and \[{{\vec{a}}_{3}}\] . It means that the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},{{\vec{a}}_{4}}\] are independent of each other.
From equation (1), we have the expression
\[\left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{\vec{a}}_{3}}+\delta {{\vec{a}}_{4}}=0\] .
First of all, we have to convert the above expression in simpler form.
\[\begin{align}
& \left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{{\vec{a}}}_{3}}+\delta {{{\vec{a}}}_{4}}=0 \\
& \Rightarrow {{{\vec{a}}}_{1}}\left( \lambda -1 \right)-{{{\vec{a}}}_{2}}\left( \lambda -1 \right)+\mu {{{\vec{a}}}_{2}}+\mu {{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{4}}-2\gamma {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}}+\delta {{{\vec{a}}}_{4}}=0 \\
& \Rightarrow {{{\vec{a}}}_{1}}\left( \lambda -1 \right)-{{{\vec{a}}}_{2}}\left( \lambda -1 \right)+\mu {{{\vec{a}}}_{2}}-2\gamma {{{\vec{a}}}_{2}}+\mu {{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{4}}+\delta {{{\vec{a}}}_{4}}=0 \\
& \Rightarrow {{{\vec{a}}}_{1}}\left( \lambda -1 \right)+{{{\vec{a}}}_{2}}\left\{ -\left( \lambda -1 \right)+\mu -2\gamma \right\}+{{{\vec{a}}}_{3}}\left( \mu +\gamma +1 \right)+{{{\vec{a}}}_{4}}\left( \gamma +\delta \right)=0 \\
\end{align}\]
In the above equation, we have the RHS equal to zero. So, the LHS of the above equation should also be equal to zero. The only way to get the LHS equal to zero is to make the coefficients of the vectors
\[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\text{ and }{{\vec{a}}_{4}}\] in the above expression equal to zero.
Our equation is, \[{{\vec{a}}_{1}}\left( \lambda -1 \right)+{{\vec{a}}_{2}}\left\{ -\left( \lambda -1 \right)+\mu -2\gamma \right\}+{{\vec{a}}_{3}}\left( \mu +\gamma +1 \right)+{{\vec{a}}_{4}}\left( \gamma +\delta \right)=0\] .
The coefficient of the vector \[{{\vec{a}}_{1}}\] = \[\left( \lambda -1 \right)\] ……………….(2)
The coefficient of the vector \[{{\vec{a}}_{2}}\] = \[-\left( \lambda -1 \right)+\mu -2\gamma =\left( 1-\lambda \right)+\mu -2\gamma \] ……………….(3)
The coefficient of the vector \[{{\vec{a}}_{3}}\] = \[\left( \mu +\gamma +1 \right)\] ……………….(4)
The coefficient of the vector \[{{\vec{a}}_{4}}\] = \[\left( \gamma +\delta \right)\] ……………….(5)
The coefficient of the vector \[{{\vec{a}}_{1}}\] should be equal to zero. From equation (2), we have the coefficient of the vector \[{{\vec{a}}_{1}}\] .
\[\left( \lambda -1 \right)=0\]
\[\Rightarrow \lambda =1\] …………………(6)
The coefficient of the vector \[{{\vec{a}}_{2}}\] should be equal to zero. From equation (3), we have the coefficient of the vector \[{{\vec{a}}_{2}}\] .
\[\left( 1-\lambda \right)+\mu -2\gamma =0\] ……………….(7)
Putting \[\lambda =1\] in equation (7), we get
\[\left( 1-1 \right)+\mu -2\gamma =0\]
\[\Rightarrow \mu =2\gamma \] ………………(8)
The coefficient of the vector \[{{\vec{a}}_{3}}\] should be equal to zero. From equation (4), we have the coefficient of the vector \[{{\vec{a}}_{2}}\] .
\[\left( \mu +\gamma +1 \right)=0\] ……………….(9)
From equation (8), we have \[\mu =2\gamma \] .
Putting \[\mu =2\gamma \] in equation (9), we get
\[\begin{align}
& \left( 2\gamma +\gamma +1 \right)=0 \\
& \Rightarrow 3\gamma =-1 \\
\end{align}\]
\[\Rightarrow \gamma =\dfrac{-1}{3}\] ………………(10)
We have, \[\mu =2\gamma \] . So, \[\mu =2\gamma =2.\dfrac{-1}{3}=\dfrac{-2}{3}\] ………………..(11)
The coefficient of the vector \[{{\vec{a}}_{4}}\] should be equal to zero. From equation (3), we have the coefficient of the vector \[{{\vec{a}}_{4}}\] .
\[\left( \gamma +\delta \right)=0\]
\[\Rightarrow \gamma =-\delta \] ……………….(12)
From equation (10), we have \[\gamma =\dfrac{-1}{3}\] .
Putting \[\gamma =\dfrac{-1}{3}\] in equation (12), we get
\[\begin{align}
& \Rightarrow \delta =-\gamma \\
& \Rightarrow \delta =-\dfrac{-1}{3} \\
\end{align}\]
\[\Rightarrow \delta =\dfrac{1}{3}\] ………………(13)
From equation (6), equation (10), equation (11), and equation (13), we have
\[\lambda =1\] , \[\mu =\dfrac{-2}{3}\] , \[\gamma =\dfrac{-1}{3}\] , and \[\delta =\dfrac{1}{3}\] .
Hence, option (A), (B) and (D) are correct.
Note: In this question, the relation between the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\] and \[{{\vec{a}}_{4}}\] is not given directly. So, one might get confused how the solve the expression \[{{\vec{a}}_{1}}\left( \lambda -1 \right)+{{\vec{a}}_{2}}\left\{ -\left( \lambda -1 \right)+\mu -2\gamma \right\}+{{\vec{a}}_{3}}\left( \mu +\gamma +1 \right)+{{\vec{a}}_{4}}\left( \gamma +\delta \right)=0\] . But the hidden information in this question is that the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\] and \[{{\vec{a}}_{4}}\] are independent of each other. It means no vectors can be expressed in terms of others.
Complete step-by-step answer:
According to the question it is given that the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},{{\vec{a}}_{4}}\] are four non-zero vectors such that no vector can be expressed as linear combination of others and \[\left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{\vec{a}}_{3}}+\delta {{\vec{a}}_{4}}=0\] …………………………(1)
It is given that no any vectors out of \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\text{ and }{{\vec{a}}_{4}}\] can be expressed as linear combination of others. It means that the vector \[{{\vec{a}}_{1}}\] can be expressed without the using the vectors \[{{\vec{a}}_{2}}\] , \[{{\vec{a}}_{3}}\] , and \[{{\vec{a}}_{4}}\] . In the same way, the vector \[{{\vec{a}}_{2}}\] can be expressed without the using the vectors \[{{\vec{a}}_{1}}\] , \[{{\vec{a}}_{3}}\] , and \[{{\vec{a}}_{4}}\] . We can also say that the vector \[{{\vec{a}}_{3}}\] can be expressed without the using the vectors \[{{\vec{a}}_{1}}\] , \[{{\vec{a}}_{2}}\] , and \[{{\vec{a}}_{4}}\] . Similarly, the vector \[{{\vec{a}}_{4}}\] can be expressed without the using the vectors \[{{\vec{a}}_{1}}\] , \[{{\vec{a}}_{2}}\] , and \[{{\vec{a}}_{3}}\] . It means that the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},{{\vec{a}}_{4}}\] are independent of each other.
From equation (1), we have the expression
\[\left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{\vec{a}}_{3}}+\delta {{\vec{a}}_{4}}=0\] .
First of all, we have to convert the above expression in simpler form.
\[\begin{align}
& \left( \lambda -1 \right)\left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right)+\mu \left( {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}} \right)+\gamma \left( {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{4}}-2{{{\vec{a}}}_{2}} \right)+{{{\vec{a}}}_{3}}+\delta {{{\vec{a}}}_{4}}=0 \\
& \Rightarrow {{{\vec{a}}}_{1}}\left( \lambda -1 \right)-{{{\vec{a}}}_{2}}\left( \lambda -1 \right)+\mu {{{\vec{a}}}_{2}}+\mu {{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{4}}-2\gamma {{{\vec{a}}}_{2}}+{{{\vec{a}}}_{3}}+\delta {{{\vec{a}}}_{4}}=0 \\
& \Rightarrow {{{\vec{a}}}_{1}}\left( \lambda -1 \right)-{{{\vec{a}}}_{2}}\left( \lambda -1 \right)+\mu {{{\vec{a}}}_{2}}-2\gamma {{{\vec{a}}}_{2}}+\mu {{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{3}}+{{{\vec{a}}}_{3}}+\gamma {{{\vec{a}}}_{4}}+\delta {{{\vec{a}}}_{4}}=0 \\
& \Rightarrow {{{\vec{a}}}_{1}}\left( \lambda -1 \right)+{{{\vec{a}}}_{2}}\left\{ -\left( \lambda -1 \right)+\mu -2\gamma \right\}+{{{\vec{a}}}_{3}}\left( \mu +\gamma +1 \right)+{{{\vec{a}}}_{4}}\left( \gamma +\delta \right)=0 \\
\end{align}\]
In the above equation, we have the RHS equal to zero. So, the LHS of the above equation should also be equal to zero. The only way to get the LHS equal to zero is to make the coefficients of the vectors
\[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\text{ and }{{\vec{a}}_{4}}\] in the above expression equal to zero.
Our equation is, \[{{\vec{a}}_{1}}\left( \lambda -1 \right)+{{\vec{a}}_{2}}\left\{ -\left( \lambda -1 \right)+\mu -2\gamma \right\}+{{\vec{a}}_{3}}\left( \mu +\gamma +1 \right)+{{\vec{a}}_{4}}\left( \gamma +\delta \right)=0\] .
The coefficient of the vector \[{{\vec{a}}_{1}}\] = \[\left( \lambda -1 \right)\] ……………….(2)
The coefficient of the vector \[{{\vec{a}}_{2}}\] = \[-\left( \lambda -1 \right)+\mu -2\gamma =\left( 1-\lambda \right)+\mu -2\gamma \] ……………….(3)
The coefficient of the vector \[{{\vec{a}}_{3}}\] = \[\left( \mu +\gamma +1 \right)\] ……………….(4)
The coefficient of the vector \[{{\vec{a}}_{4}}\] = \[\left( \gamma +\delta \right)\] ……………….(5)
The coefficient of the vector \[{{\vec{a}}_{1}}\] should be equal to zero. From equation (2), we have the coefficient of the vector \[{{\vec{a}}_{1}}\] .
\[\left( \lambda -1 \right)=0\]
\[\Rightarrow \lambda =1\] …………………(6)
The coefficient of the vector \[{{\vec{a}}_{2}}\] should be equal to zero. From equation (3), we have the coefficient of the vector \[{{\vec{a}}_{2}}\] .
\[\left( 1-\lambda \right)+\mu -2\gamma =0\] ……………….(7)
Putting \[\lambda =1\] in equation (7), we get
\[\left( 1-1 \right)+\mu -2\gamma =0\]
\[\Rightarrow \mu =2\gamma \] ………………(8)
The coefficient of the vector \[{{\vec{a}}_{3}}\] should be equal to zero. From equation (4), we have the coefficient of the vector \[{{\vec{a}}_{2}}\] .
\[\left( \mu +\gamma +1 \right)=0\] ……………….(9)
From equation (8), we have \[\mu =2\gamma \] .
Putting \[\mu =2\gamma \] in equation (9), we get
\[\begin{align}
& \left( 2\gamma +\gamma +1 \right)=0 \\
& \Rightarrow 3\gamma =-1 \\
\end{align}\]
\[\Rightarrow \gamma =\dfrac{-1}{3}\] ………………(10)
We have, \[\mu =2\gamma \] . So, \[\mu =2\gamma =2.\dfrac{-1}{3}=\dfrac{-2}{3}\] ………………..(11)
The coefficient of the vector \[{{\vec{a}}_{4}}\] should be equal to zero. From equation (3), we have the coefficient of the vector \[{{\vec{a}}_{4}}\] .
\[\left( \gamma +\delta \right)=0\]
\[\Rightarrow \gamma =-\delta \] ……………….(12)
From equation (10), we have \[\gamma =\dfrac{-1}{3}\] .
Putting \[\gamma =\dfrac{-1}{3}\] in equation (12), we get
\[\begin{align}
& \Rightarrow \delta =-\gamma \\
& \Rightarrow \delta =-\dfrac{-1}{3} \\
\end{align}\]
\[\Rightarrow \delta =\dfrac{1}{3}\] ………………(13)
From equation (6), equation (10), equation (11), and equation (13), we have
\[\lambda =1\] , \[\mu =\dfrac{-2}{3}\] , \[\gamma =\dfrac{-1}{3}\] , and \[\delta =\dfrac{1}{3}\] .
Hence, option (A), (B) and (D) are correct.
Note: In this question, the relation between the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\] and \[{{\vec{a}}_{4}}\] is not given directly. So, one might get confused how the solve the expression \[{{\vec{a}}_{1}}\left( \lambda -1 \right)+{{\vec{a}}_{2}}\left\{ -\left( \lambda -1 \right)+\mu -2\gamma \right\}+{{\vec{a}}_{3}}\left( \mu +\gamma +1 \right)+{{\vec{a}}_{4}}\left( \gamma +\delta \right)=0\] . But the hidden information in this question is that the vectors \[{{\vec{a}}_{1}},{{\vec{a}}_{2}},{{\vec{a}}_{3}},\] and \[{{\vec{a}}_{4}}\] are independent of each other. It means no vectors can be expressed in terms of others.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

