
In a first-order reaction, the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 minutes. The time taken for the concentration to change from 0.1 M to 0.025 M is:
A. 30 min
B. 15 min
C. 7.5min
D. 60min
Answer
573.3k+ views
Hint: “A first-order reaction is a reaction that proceeds at a rate that depends linearly on only concentration of one reactant”. The formula to calculate the rate constant of a first order reaction is
\[\text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right]\]
K = rate constant of the first order reaction
t = half-life of the reaction
Complete step by step solution:
In the question, it is mentioned that the order of the reaction is first order.
In the question it is given that the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 min (half-life of the reaction).
\[\text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right]\]
k = rate constant of the first order reaction
t = half-life of the reaction
Now substitute all the known values in the above reaction.
\[\begin{align}
& \text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right] \\
& k=\dfrac{2.303}{15}\left[ \dfrac{0.8}{0.4} \right]\to (1) \\
\end{align}\]
Coming to the second case the concentration of the reactant decreases from 0.1 M to 0.025 M and it is also a first order reaction. Then
\[\begin{align}
& \text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right] \\
& k=\dfrac{2.303}{t}\left[ \dfrac{0.1}{0.025} \right]\to (2) \\
\end{align}\]
For all first order reactions if reactants are same then the rate constants are also same.
Then we can substitute equation (2) equation (1) to get half-life (t) of second reaction.
\[\begin{align}
& \dfrac{2.303}{t}\left[ \dfrac{0.1}{0.025} \right]=\dfrac{2.303}{15}\left[ \dfrac{0.8}{0.4} \right] \\
& \text{on solving the above calculation we will get} \\
& \text{t =30min} \\
\end{align}\]
Therefore time taken for the concentration to change from 0.1 M to 0.025 M is 30 min.
So, the correct option is A, 30 min.
Note: Half-life in a chemical reaction is the time required for a quantity or concentration of a chemical to reduce to half of its initial quantity or concentration. The half-life of a chemical reaction is going to be denoted with a symbol\[{{t}_{{}^{1}/{}_{2}}}\].
\[\text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right]\]
K = rate constant of the first order reaction
t = half-life of the reaction
Complete step by step solution:
In the question, it is mentioned that the order of the reaction is first order.
In the question it is given that the concentration of the reactant decreases from 0.8 M to 0.4 M in 15 min (half-life of the reaction).
\[\text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right]\]
k = rate constant of the first order reaction
t = half-life of the reaction
Now substitute all the known values in the above reaction.
\[\begin{align}
& \text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right] \\
& k=\dfrac{2.303}{15}\left[ \dfrac{0.8}{0.4} \right]\to (1) \\
\end{align}\]
Coming to the second case the concentration of the reactant decreases from 0.1 M to 0.025 M and it is also a first order reaction. Then
\[\begin{align}
& \text{k=}\dfrac{\text{2}\text{.303}}{\text{t}}\text{log}\left[ \dfrac{\text{concentration of the reactant}}{\text{concentration of the product}} \right] \\
& k=\dfrac{2.303}{t}\left[ \dfrac{0.1}{0.025} \right]\to (2) \\
\end{align}\]
For all first order reactions if reactants are same then the rate constants are also same.
Then we can substitute equation (2) equation (1) to get half-life (t) of second reaction.
\[\begin{align}
& \dfrac{2.303}{t}\left[ \dfrac{0.1}{0.025} \right]=\dfrac{2.303}{15}\left[ \dfrac{0.8}{0.4} \right] \\
& \text{on solving the above calculation we will get} \\
& \text{t =30min} \\
\end{align}\]
Therefore time taken for the concentration to change from 0.1 M to 0.025 M is 30 min.
So, the correct option is A, 30 min.
Note: Half-life in a chemical reaction is the time required for a quantity or concentration of a chemical to reduce to half of its initial quantity or concentration. The half-life of a chemical reaction is going to be denoted with a symbol\[{{t}_{{}^{1}/{}_{2}}}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

