
In a $500ml$ flask, the degree of dissociation of $PC{{l}_{5}}$ at equilibrium is $40%$ and the initial amount is $5$ moles. The value of equilibrium constant in $mol{{L}^{-1}}$ for the decomposition of $PC{{l}_{5}}$ is
A. $2.33$
B. $2.66$
C. $5.32$
D. $4.66$
Answer
558k+ views
Hint: Equilibrium constant K is the ratio of concentration of products and reactants once the reaction has reached equilibrium. It is important in the context of chemical reactions as it tells us about how reversible the reaction is.
Formula used: ${{K}_{eq}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
Where, ${{K}_{eq}}$ is the dissociation constant
$P$ is the concentration of product
$R$ is the concentration of reactant
Complete step by step answer:
The ratio between the product of molar concentrations of the products to that of molar concentration of reactants with each concentration term raised to a power equal to stoichiometric coefficient in the balanced chemical reaction at a given temperature is called an equilibrium constant.
Here, it is given that the degree of dissociation $\left( \alpha \right)=40%$
$\alpha =\dfrac{D.M}{I.M}$
Where, $\alpha $ is the degree of dissociation
$D.M$ is the dissociated moles
$I.M$ is the initial moles
Here, $D.M=40$ and $I.M=100$
Now, substituting the value in the given formula we get,
$\alpha =\dfrac{40}{100}$
$\alpha =0.4$
To calculate the value of ${{K}_{c}}$ , that is, concentration at equilibrium, the formula can be written as:
${{K}_{C}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
${{K}_{C}}$ is the concentration at equilibrium
$\left[ P \right]$ is the concentration of product
$\left[ R \right]$ is the concentration of reactant
The decomposition of $PC{{l}_{5}}$ is given as:
$PC{{l}_{5}}\rightleftharpoons PC{{l}_{3}}+C{{l}_{2}}$
Since the degree of dissociation is $40%$ so the moles at equilibrium:
${{K}_{C}}=\dfrac{\left[ PC{{l}_{3}} \right]\left[ C{{l}_{2}} \right]}{\left[ PC{{l}_{5}} \right]}$
Concentration of $PC{{l}_{3}}=\dfrac{5\alpha }{0.5}$
$\Rightarrow \dfrac{5\times 0.4}{0.5}$
Concentration of $C{{l}_{2}}=\dfrac{5\alpha }{0.5}$
$\Rightarrow \dfrac{5\times 0.4}{0.5}$
Concentration of $PC{{l}_{5}}=\dfrac{5(1-\alpha )}{0.5}$
$\Rightarrow \dfrac{5\times (1-0.4)}{0.5}=\dfrac{5\times 0.6}{0.5}$
Now, substituting the value of $\alpha $ in concentration at equilibrium and further substituting them in the above formula, we get,
${{K}_{C}}=\dfrac{\left( \dfrac{5\times 0.4}{0.5} \right)\left( \dfrac{5\times 0.4}{0.5} \right)}{\left( \dfrac{5\times 0.6}{0.5} \right)}$
On further solving we get.
${{K}_{C}}=2.66$ $Mol/l$
So, the correct answer is Option B.
Note: When the reaction is in equilibrium, ratio of product of concentration of products to that of reactants is called as reaction quotient and is denoted by $Q$ and when the reaction is in equilibrium it is called as equilibrium constant.
The expression of equilibrium constant for the reversed reaction is written as the reciprocal of that for the forward reaction.
Degree of dissociation is defined as the ratio of dissociated moles to the initial number of moles.
Formula used: ${{K}_{eq}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
Where, ${{K}_{eq}}$ is the dissociation constant
$P$ is the concentration of product
$R$ is the concentration of reactant
Complete step by step answer:
The ratio between the product of molar concentrations of the products to that of molar concentration of reactants with each concentration term raised to a power equal to stoichiometric coefficient in the balanced chemical reaction at a given temperature is called an equilibrium constant.
Here, it is given that the degree of dissociation $\left( \alpha \right)=40%$
$\alpha =\dfrac{D.M}{I.M}$
Where, $\alpha $ is the degree of dissociation
$D.M$ is the dissociated moles
$I.M$ is the initial moles
Here, $D.M=40$ and $I.M=100$
Now, substituting the value in the given formula we get,
$\alpha =\dfrac{40}{100}$
$\alpha =0.4$
To calculate the value of ${{K}_{c}}$ , that is, concentration at equilibrium, the formula can be written as:
${{K}_{C}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
${{K}_{C}}$ is the concentration at equilibrium
$\left[ P \right]$ is the concentration of product
$\left[ R \right]$ is the concentration of reactant
The decomposition of $PC{{l}_{5}}$ is given as:
$PC{{l}_{5}}\rightleftharpoons PC{{l}_{3}}+C{{l}_{2}}$
| $PC{{l}_{5}}$ | $PC{{l}_{3}}$ | $C{{l}_{2}}$ | |
| Initial concentration | $5$ | $0$ | $0$ |
| Final concentration | $5(1-\alpha )$ | $5\alpha $ | $5\alpha $ |
| Concentration at equilibrium | $\dfrac{5(1-\alpha )}{0.5}$ | $\dfrac{5\alpha }{0.5}$ | $\dfrac{5\alpha }{0.5}$ . |
Since the degree of dissociation is $40%$ so the moles at equilibrium:
${{K}_{C}}=\dfrac{\left[ PC{{l}_{3}} \right]\left[ C{{l}_{2}} \right]}{\left[ PC{{l}_{5}} \right]}$
Concentration of $PC{{l}_{3}}=\dfrac{5\alpha }{0.5}$
$\Rightarrow \dfrac{5\times 0.4}{0.5}$
Concentration of $C{{l}_{2}}=\dfrac{5\alpha }{0.5}$
$\Rightarrow \dfrac{5\times 0.4}{0.5}$
Concentration of $PC{{l}_{5}}=\dfrac{5(1-\alpha )}{0.5}$
$\Rightarrow \dfrac{5\times (1-0.4)}{0.5}=\dfrac{5\times 0.6}{0.5}$
Now, substituting the value of $\alpha $ in concentration at equilibrium and further substituting them in the above formula, we get,
${{K}_{C}}=\dfrac{\left( \dfrac{5\times 0.4}{0.5} \right)\left( \dfrac{5\times 0.4}{0.5} \right)}{\left( \dfrac{5\times 0.6}{0.5} \right)}$
On further solving we get.
${{K}_{C}}=2.66$ $Mol/l$
So, the correct answer is Option B.
Note: When the reaction is in equilibrium, ratio of product of concentration of products to that of reactants is called as reaction quotient and is denoted by $Q$ and when the reaction is in equilibrium it is called as equilibrium constant.
The expression of equilibrium constant for the reversed reaction is written as the reciprocal of that for the forward reaction.
Degree of dissociation is defined as the ratio of dissociated moles to the initial number of moles.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

