
i.Given \[A = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
2&0
\end{array}} \right]\] , \[B = \left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
4&0
\end{array}} \right]\] and \[C = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&2
\end{array}} \right]\] . Find the matrix X such that \[A + X = 2B + C\] .
ii.If \[\left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right] + 2M = 3\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\] , find the matrix M.
Answer
585k+ views
Hint: i. Firstly, multiply each element of the matrix B by 2. After that, add the matrices 2B and C. Now, to find the matrix X, finally subtract matrix A from the matrix 2B+C.
ii. For the first step multiply each of the element of the matrix \[\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\] by 3. Now, subtract the matrix \[\left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right]\] from matrix \[3\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\]. This will give a matrix, let’s say matrix Q. For the final answer, divide the matrix Q by 2 to get the answer of matrix M.
Complete step-by-step answer:
The given equation of matrices to find the matrix X, is \[A + X = 2B + C\] .
Firstly, multiply each element of the matrix B by 2.
\[\therefore 2B = 2\left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
4&0
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{2 \times - 3}&{2 \times 2} \\
{2 \times 4}&{2 \times 0}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{ - 6}&4 \\
8&0
\end{array}} \right]\]
Now, add the matrices 2B and C.
\[\therefore 2B + C = \left[ {\begin{array}{*{20}{c}}
{ - 6}&4 \\
8&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&2
\end{array}} \right]\]
\[
= \left[ {\begin{array}{*{20}{c}}
{ - 6 + 1}&{4 + 0} \\
{8 + 0}&{0 + 2}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ - 5}&4 \\
8&2
\end{array}} \right] \\
\]
Now,
\[A + X = 2B + C\]
\[
\therefore \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
2&0
\end{array}} \right] + X = \left[ {\begin{array}{*{20}{c}}
{ - 5}&4 \\
8&2
\end{array}} \right] \\
\therefore X = \left[ {\begin{array}{*{20}{c}}
{ - 5}&4 \\
8&2
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
2&0
\end{array}} \right] \\
\therefore X = \left[ {\begin{array}{*{20}{c}}
{ - 5 - 2}&{4 - \left( { - 1} \right)} \\
{8 - 2}&{2 - 0}
\end{array}} \right] \\
\therefore X = \left[ {\begin{array}{*{20}{c}}
{ - 7}&5 \\
6&2
\end{array}} \right] \\
\]
Thus, \[X = \left[ {\begin{array}{*{20}{c}}
{ - 7}&5 \\
6&2
\end{array}} \right]\] .
The given equation to find the matrix M is \[\left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right] + 2M = 3\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\] .
First of all, multiply each element of the matrix \[\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\] by 3.
\[\therefore 3\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3 \times 3}&{3 \times 2} \\
{3 \times 0}&{3 \times - 3}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
9&6 \\
0&{ - 9}
\end{array}} \right]\]
Now, we have
\[\left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right] + 2M = \left[ {\begin{array}{*{20}{c}}
9&6 \\
0&{ - 9}
\end{array}} \right]\]
\[\therefore 2M = \left[ {\begin{array}{*{20}{c}}
9&6 \\
0&{ - 9}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right]\]
\[\therefore 2M = \left[ {\begin{array}{*{20}{c}}
{9 - 1}&{6 - 4} \\
{0 - \left( { - 2} \right)}&{ - 9 - 3}
\end{array}} \right]\]
\[
\therefore 2M = \left[ {\begin{array}{*{20}{c}}
8&2 \\
2&{ - 12}
\end{array}} \right] \\
\therefore M = \dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
8&2 \\
2&{ - 12}
\end{array}} \right] \\
\therefore M = \left[ {\begin{array}{*{20}{c}}
{\dfrac{8}{2}}&{\dfrac{2}{2}} \\
{\dfrac{2}{2}}&{\dfrac{{ - 12}}{2}}
\end{array}} \right] \\
\therefore M = \left[ {\begin{array}{*{20}{c}}
4&1 \\
1&{ - 6}
\end{array}} \right] \\
\]
Thus, \[M = \left[ {\begin{array}{*{20}{c}}
4&1 \\
1&{ - 6}
\end{array}} \right]\] .
Note: Whenever it is said to multiply any matrix by any number, we have to multiply each and every element of the matrix by that particular number. While, in Determinant if it is said to multiply the determinant by any number, we have to multiply any single row or any single column.
ii. For the first step multiply each of the element of the matrix \[\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\] by 3. Now, subtract the matrix \[\left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right]\] from matrix \[3\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\]. This will give a matrix, let’s say matrix Q. For the final answer, divide the matrix Q by 2 to get the answer of matrix M.
Complete step-by-step answer:
The given equation of matrices to find the matrix X, is \[A + X = 2B + C\] .
Firstly, multiply each element of the matrix B by 2.
\[\therefore 2B = 2\left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
4&0
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{2 \times - 3}&{2 \times 2} \\
{2 \times 4}&{2 \times 0}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
{ - 6}&4 \\
8&0
\end{array}} \right]\]
Now, add the matrices 2B and C.
\[\therefore 2B + C = \left[ {\begin{array}{*{20}{c}}
{ - 6}&4 \\
8&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&2
\end{array}} \right]\]
\[
= \left[ {\begin{array}{*{20}{c}}
{ - 6 + 1}&{4 + 0} \\
{8 + 0}&{0 + 2}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ - 5}&4 \\
8&2
\end{array}} \right] \\
\]
Now,
\[A + X = 2B + C\]
\[
\therefore \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
2&0
\end{array}} \right] + X = \left[ {\begin{array}{*{20}{c}}
{ - 5}&4 \\
8&2
\end{array}} \right] \\
\therefore X = \left[ {\begin{array}{*{20}{c}}
{ - 5}&4 \\
8&2
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
2&0
\end{array}} \right] \\
\therefore X = \left[ {\begin{array}{*{20}{c}}
{ - 5 - 2}&{4 - \left( { - 1} \right)} \\
{8 - 2}&{2 - 0}
\end{array}} \right] \\
\therefore X = \left[ {\begin{array}{*{20}{c}}
{ - 7}&5 \\
6&2
\end{array}} \right] \\
\]
Thus, \[X = \left[ {\begin{array}{*{20}{c}}
{ - 7}&5 \\
6&2
\end{array}} \right]\] .
The given equation to find the matrix M is \[\left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right] + 2M = 3\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\] .
First of all, multiply each element of the matrix \[\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right]\] by 3.
\[\therefore 3\left[ {\begin{array}{*{20}{c}}
3&2 \\
0&{ - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{3 \times 3}&{3 \times 2} \\
{3 \times 0}&{3 \times - 3}
\end{array}} \right]\]
\[ = \left[ {\begin{array}{*{20}{c}}
9&6 \\
0&{ - 9}
\end{array}} \right]\]
Now, we have
\[\left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right] + 2M = \left[ {\begin{array}{*{20}{c}}
9&6 \\
0&{ - 9}
\end{array}} \right]\]
\[\therefore 2M = \left[ {\begin{array}{*{20}{c}}
9&6 \\
0&{ - 9}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
1&4 \\
{ - 2}&3
\end{array}} \right]\]
\[\therefore 2M = \left[ {\begin{array}{*{20}{c}}
{9 - 1}&{6 - 4} \\
{0 - \left( { - 2} \right)}&{ - 9 - 3}
\end{array}} \right]\]
\[
\therefore 2M = \left[ {\begin{array}{*{20}{c}}
8&2 \\
2&{ - 12}
\end{array}} \right] \\
\therefore M = \dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
8&2 \\
2&{ - 12}
\end{array}} \right] \\
\therefore M = \left[ {\begin{array}{*{20}{c}}
{\dfrac{8}{2}}&{\dfrac{2}{2}} \\
{\dfrac{2}{2}}&{\dfrac{{ - 12}}{2}}
\end{array}} \right] \\
\therefore M = \left[ {\begin{array}{*{20}{c}}
4&1 \\
1&{ - 6}
\end{array}} \right] \\
\]
Thus, \[M = \left[ {\begin{array}{*{20}{c}}
4&1 \\
1&{ - 6}
\end{array}} \right]\] .
Note: Whenever it is said to multiply any matrix by any number, we have to multiply each and every element of the matrix by that particular number. While, in Determinant if it is said to multiply the determinant by any number, we have to multiply any single row or any single column.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

