
If${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}$,${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = - \dfrac{\pi }{3}$, then the number of values of$\left( {x,y} \right)$is
A. $2$
B. $4$
C. $0$
D. None of these
Answer
511.2k+ views
Hint: We need to analyze the given information first, so that we are able to solve the given problem. Here we are asked to calculate the number of values of$\left( {x,y} \right)$. The number of values refers to the solution. That is we need to calculate the solution for the given equations. To find the solution, the first step we need to follow is to solve the given equations. Here, we are going to solve the given equation to obtain the values of $x$ and$y$.
Formula to be used:
The trigonometric identity that we need to apply in this problem is as follows.
${\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}$
Complete step by step answer:
Let ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}$ …..$\left( 1 \right)$ and${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = - \dfrac{\pi }{3}$ ….$\left( 2 \right)$
We shall add the equation $\left( 1 \right)$ and the equation $\left( 2 \right)$
That is ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3} - \dfrac{\pi }{3}$
$\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y - {{\cos }^ - }y} \right) = \dfrac{\pi }{3}$
$\dfrac{\pi }{2} + \left( {{{\sin }^{ - 1}}y - {{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{3}$ (Here we applied the trigonometric identity${\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}$ )
Hence, we get ${\sin ^{ - 1}}y - {\cos ^{ - 1}}y = - \dfrac{\pi }{6}$ …….$\left( 3 \right)$
We all know the following trigonometric identity ${\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}$ ….$\left( 4 \right)$
Now we need to add the equation $\left( 3 \right)$ and the equation $\left( 4 \right)$
${\sin ^{ - 1}}y - {\cos ^{ - 1}}y + {\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{{ - \pi }}{6} + \dfrac{\pi }{2}$
$ \Rightarrow 2{\sin ^{ - 1}}y = \dfrac{{ - \pi + 3\pi }}{6}$
$ \Rightarrow 2{\sin ^{ - 1}}y = \dfrac{{2\pi }}{6}$
$ \Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{3} \times \dfrac{1}{2}$
$ = \dfrac{\pi }{6}$
${\sin ^{ - 1}}y = \dfrac{\pi }{6}$
$ \Rightarrow y = \sin \dfrac{\pi }{6}$
Thus, we get$y = \dfrac{1}{2}$
Now we need to substitute ${\sin ^{ - 1}}y = \dfrac{\pi }{6}$ in the equation$\left( 1 \right)$
${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}$
$ \Rightarrow {\sin ^{ - 1}}x + \dfrac{\pi }{6} = \dfrac{{2\pi }}{3}$
$ \Rightarrow {\sin ^{ - 1}}x = \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}$
$ = \dfrac{{4\pi - \pi }}{6}$
$ = \dfrac{{3\pi }}{6}$
${\sin ^{ - 1}}x = \dfrac{\pi }{2}$
$x = \sin \dfrac{\pi }{2}$
$ \Rightarrow x = 1$
Therefore, the obtained solution is $\left( {x,y} \right) = \left( {1,\dfrac{1}{2}} \right)$,So the number of values of $\left( {x,y} \right)$ is 1.
So, the correct answer is “Option D”.
Note: We have obtained the solution $\left( {x,y} \right) = \left( {1,\dfrac{1}{2}} \right)$.we can also verify whether the obtained solution is correct or not. We shall substitute$x = 1$ ,$y = \dfrac{1}{2}$ in the equation $\left( 2 \right)$
That is ${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = - \dfrac{\pi }{3}$
$ \Rightarrow {\cos ^{ - 1}}\left( 1 \right) - {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = - \dfrac{\pi }{3}$
$ \Rightarrow 0 - \dfrac{\pi }{3} = - \dfrac{\pi }{3}$
Hence we get $ - \dfrac{\pi }{3}$ which is on the right-hand side of the equation.
Therefore, the obtained solution $\left( {x,y} \right) = \left( {1,\dfrac{1}{2}} \right)$is verified.
Formula to be used:
The trigonometric identity that we need to apply in this problem is as follows.
${\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}$
Complete step by step answer:
Let ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}$ …..$\left( 1 \right)$ and${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = - \dfrac{\pi }{3}$ ….$\left( 2 \right)$
We shall add the equation $\left( 1 \right)$ and the equation $\left( 2 \right)$
That is ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3} - \dfrac{\pi }{3}$
$\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right) + \left( {{{\sin }^{ - 1}}y - {{\cos }^ - }y} \right) = \dfrac{\pi }{3}$
$\dfrac{\pi }{2} + \left( {{{\sin }^{ - 1}}y - {{\cos }^{ - 1}}y} \right) = \dfrac{\pi }{3}$ (Here we applied the trigonometric identity${\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}$ )
Hence, we get ${\sin ^{ - 1}}y - {\cos ^{ - 1}}y = - \dfrac{\pi }{6}$ …….$\left( 3 \right)$
We all know the following trigonometric identity ${\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}$ ….$\left( 4 \right)$
Now we need to add the equation $\left( 3 \right)$ and the equation $\left( 4 \right)$
${\sin ^{ - 1}}y - {\cos ^{ - 1}}y + {\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{{ - \pi }}{6} + \dfrac{\pi }{2}$
$ \Rightarrow 2{\sin ^{ - 1}}y = \dfrac{{ - \pi + 3\pi }}{6}$
$ \Rightarrow 2{\sin ^{ - 1}}y = \dfrac{{2\pi }}{6}$
$ \Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{3} \times \dfrac{1}{2}$
$ = \dfrac{\pi }{6}$
${\sin ^{ - 1}}y = \dfrac{\pi }{6}$
$ \Rightarrow y = \sin \dfrac{\pi }{6}$
Thus, we get$y = \dfrac{1}{2}$
Now we need to substitute ${\sin ^{ - 1}}y = \dfrac{\pi }{6}$ in the equation$\left( 1 \right)$
${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}$
$ \Rightarrow {\sin ^{ - 1}}x + \dfrac{\pi }{6} = \dfrac{{2\pi }}{3}$
$ \Rightarrow {\sin ^{ - 1}}x = \dfrac{{2\pi }}{3} - \dfrac{\pi }{6}$
$ = \dfrac{{4\pi - \pi }}{6}$
$ = \dfrac{{3\pi }}{6}$
${\sin ^{ - 1}}x = \dfrac{\pi }{2}$
$x = \sin \dfrac{\pi }{2}$
$ \Rightarrow x = 1$
Therefore, the obtained solution is $\left( {x,y} \right) = \left( {1,\dfrac{1}{2}} \right)$,So the number of values of $\left( {x,y} \right)$ is 1.
So, the correct answer is “Option D”.
Note: We have obtained the solution $\left( {x,y} \right) = \left( {1,\dfrac{1}{2}} \right)$.we can also verify whether the obtained solution is correct or not. We shall substitute$x = 1$ ,$y = \dfrac{1}{2}$ in the equation $\left( 2 \right)$
That is ${\cos ^{ - 1}}x - {\cos ^{ - 1}}y = - \dfrac{\pi }{3}$
$ \Rightarrow {\cos ^{ - 1}}\left( 1 \right) - {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = - \dfrac{\pi }{3}$
$ \Rightarrow 0 - \dfrac{\pi }{3} = - \dfrac{\pi }{3}$
Hence we get $ - \dfrac{\pi }{3}$ which is on the right-hand side of the equation.
Therefore, the obtained solution $\left( {x,y} \right) = \left( {1,\dfrac{1}{2}} \right)$is verified.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

