
If\[\bar a\],\[\bar b\],\[\bar c\]are unit vectors such that \[\bar a + \bar b + \bar c = 0\]. Find \[\bar a.\bar b + \bar b.\bar c + \bar c.\bar a\]
Answer
567.6k+ views
Hint: In this question three unit vectors are given and the values of their sum is given and we need to find their sum of the product of two vectors at a time so we will first find the square of the mod of the given vector equation and then we will substitute the values of the unit vector to find the value of the desired vector equation.
Complete step-by-step answer:
Given \[\bar a\],\[\bar b\],\[\bar c\] are unit vectors
Vector \[\bar a + \bar b + \bar c = 0\]
Take mod on both side of the given vector
\[\Rightarrow \left| {\bar a + \bar b + \bar c} \right| = \left| 0 \right| - - (i)\]
Now since we know that the mod of number 0 is always 0, hence we can write the vector equation (i) as
\[\Rightarrow \left| {\bar a + \bar b + \bar c} \right| = 0 - - (ii)\left[ {\because \left| 0 \right| = 0} \right]\]
Now we take square on the both sides of the vector equation (ii), so we will get
\[
\Rightarrow {\left| {\bar a + \bar b + \bar c} \right|^2} = 0 \\
\Rightarrow \left| a \right| + \left| b \right| + \left| c \right| + 2\vec a\vec b + 2\vec b\vec c + 2\vec c\vec a = 0 - - (iii) \;
\]
Now since it is already said that the vectors \[\bar a\],\[\bar b\],\[\bar c\] are unit vectors, hence we can say \[\left| a \right| = \left| b \right| = \left| c \right| = 1\]
Now by substituting the values of unit vector in the vector equation (iii), we get
\[\Rightarrow 1 + 1 + 1 + 2\vec a\vec b + 2\vec b\vec c + 2\vec c\vec a = 0\]
By further solving this equation, we get
\[
3 + 2\vec a\vec b + 2\vec b\vec c + 2\vec c\vec a = 0 \\
2\left( {\vec a\vec b + \vec b\vec c + \vec c\vec a} \right) = - 3 \\
\vec a\vec b + \vec b\vec c + \vec c\vec a = \dfrac{{ - 3}}{2} \;
\]
Hence the value of the vector \[\bar a.\bar b + \bar b.\bar c + \bar c.\bar a\] is equal to \[\dfrac{{ - 3}}{2}\]
Note: Students must note that the modulus of 0 is always 0 and the modulus of any positive number is the same number whose modulus is to be found and in the case of any negative number its modulus is the number itself ignoring the negative sign.
\[
\left| 0 \right| = 0 \\
\left| a \right| = a \\
\left| { - b} \right| = b \;
\]
Complete step-by-step answer:
Given \[\bar a\],\[\bar b\],\[\bar c\] are unit vectors
Vector \[\bar a + \bar b + \bar c = 0\]
Take mod on both side of the given vector
\[\Rightarrow \left| {\bar a + \bar b + \bar c} \right| = \left| 0 \right| - - (i)\]
Now since we know that the mod of number 0 is always 0, hence we can write the vector equation (i) as
\[\Rightarrow \left| {\bar a + \bar b + \bar c} \right| = 0 - - (ii)\left[ {\because \left| 0 \right| = 0} \right]\]
Now we take square on the both sides of the vector equation (ii), so we will get
\[
\Rightarrow {\left| {\bar a + \bar b + \bar c} \right|^2} = 0 \\
\Rightarrow \left| a \right| + \left| b \right| + \left| c \right| + 2\vec a\vec b + 2\vec b\vec c + 2\vec c\vec a = 0 - - (iii) \;
\]
Now since it is already said that the vectors \[\bar a\],\[\bar b\],\[\bar c\] are unit vectors, hence we can say \[\left| a \right| = \left| b \right| = \left| c \right| = 1\]
Now by substituting the values of unit vector in the vector equation (iii), we get
\[\Rightarrow 1 + 1 + 1 + 2\vec a\vec b + 2\vec b\vec c + 2\vec c\vec a = 0\]
By further solving this equation, we get
\[
3 + 2\vec a\vec b + 2\vec b\vec c + 2\vec c\vec a = 0 \\
2\left( {\vec a\vec b + \vec b\vec c + \vec c\vec a} \right) = - 3 \\
\vec a\vec b + \vec b\vec c + \vec c\vec a = \dfrac{{ - 3}}{2} \;
\]
Hence the value of the vector \[\bar a.\bar b + \bar b.\bar c + \bar c.\bar a\] is equal to \[\dfrac{{ - 3}}{2}\]
Note: Students must note that the modulus of 0 is always 0 and the modulus of any positive number is the same number whose modulus is to be found and in the case of any negative number its modulus is the number itself ignoring the negative sign.
\[
\left| 0 \right| = 0 \\
\left| a \right| = a \\
\left| { - b} \right| = b \;
\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

