
If ${z_1},{z_2},{z_3}$ are 3 distinct complex numbers such that $\dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = \dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = \dfrac{5}{{\left| {{z_1} - {z_2}} \right|}}$ then what is the value of $\dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}}$.
$
{\text{A}}{\text{. 0}} \\
{\text{B}}{\text{. }}\sqrt 5 \\
{\text{C}}{\text{. 5}} \\
{\text{D}}{\text{. 25}} \\
$
Answer
617.4k+ views
Hint: Here, we will proceed by finding the values of \[\left( {{z_2} - {z_3}} \right)\], \[\left( {{z_3} - {z_1}} \right)\] and \[\left( {{z_1} - {z_2}} \right)\] from the given equation with the help of formulas like ${\left| z \right|^2} = z\left( {\overline z } \right)$ where z is any complex number and \[\overline {{z_a} - {z_b}} = \overline {{z_a}} - \overline {{z_b}} \] where \[{z_a},{z_b}\] are any two distinct complex numbers.
Complete step-by-step answer:
Given, for any three distinct complex numbers ${z_1},{z_2},{z_3}$
$\dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = \dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = \dfrac{5}{{\left| {{z_1} - {z_2}} \right|}} = k{\text{(say) }} \to {\text{(1)}}$
By considering equation (1), we can write
$
\dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = k \\
\Rightarrow k\left| {{z_2} - {z_3}} \right| = 3 \\
$
By squaring both sides of the above equation, we get
$
\Rightarrow {\left[ {k\left| {{z_2} - {z_3}} \right|} \right]^2} = {3^2} \\
\Rightarrow {k^2}{\left| {{z_2} - {z_3}} \right|^2} = 9{\text{ }} \to {\text{(2)}} \\
$
Again by considering equation (1), we can write
$
\dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = k \\
\Rightarrow k\left| {{z_3} - {z_1}} \right| = 4 \\
$
By squaring both sides of the above equation, we get
$
\Rightarrow {\left[ {k\left| {{z_3} - {z_1}} \right|} \right]^2} = {4^2} \\
\Rightarrow {k^2}{\left| {{z_3} - {z_1}} \right|^2} = 16{\text{ }} \to {\text{(3)}} \\
$
Again by considering equation (1), we can write
$
\dfrac{5}{{\left| {{z_1} - {z_2}} \right|}} = k \\
\Rightarrow k\left| {{z_1} - {z_2}} \right| = 5 \\
$
By squaring both sides of the above equation, we get
$
\Rightarrow {\left[ {k\left| {{z_1} - {z_2}} \right|} \right]^2} = {5^2} \\
\Rightarrow {k^2}{\left| {{z_1} - {z_2}} \right|^2} = 25{\text{ }} \to {\text{(4)}} \\
$
As we know that for any complex number z, the square of the magnitude of this complex number is equal to the product of this complex number with the conjugate of this complex number.
i.e., ${\left| z \right|^2} = z\left( {\overline z } \right){\text{ }} \to {\text{(5)}}$
Using the formula given by equation (5) in equation (2), we get
\[
\Rightarrow {k^2}\left( {{z_2} - {z_3}} \right)\left( {\overline {{z_2} - {z_3}} } \right) = 9 \\
\Rightarrow \left( {{z_2} - {z_3}} \right) = \dfrac{9}{{{k^2}\left( {\overline {{z_2} - {z_3}} } \right)}}{\text{ }} \to {\text{(6)}} \\
\]
Using the formula given by equation (5) in equation (3), we get
\[
\Rightarrow {k^2}\left( {{z_3} - {z_1}} \right)\left( {\overline {{z_3} - {z_1}} } \right) = 16 \\
\Rightarrow \left( {{z_3} - {z_1}} \right) = \dfrac{{16}}{{{k^2}\left( {\overline {{z_3} - {z_1}} } \right)}}{\text{ }} \to {\text{(7)}} \\
\]
Using the formula given by equation (5) in equation (4), we get
\[
\Rightarrow {k^2}\left( {{z_1} - {z_2}} \right)\left( {\overline {{z_1} - {z_2}} } \right) = 25 \\
\Rightarrow \left( {{z_1} - {z_2}} \right) = \dfrac{{25}}{{{k^2}\left( {\overline {{z_1} - {z_2}} } \right)}}{\text{ }} \to {\text{(8)}} \\
\]
For any two complex numbers \[{z_a},{z_b}\], we can write
\[\overline {{z_a} - {z_b}} = \overline {{z_a}} - \overline {{z_b}} {\text{ }} \to {\text{(9)}}\]
Using the formula given by equation (9) in equation (6), we get
\[ \Rightarrow \left( {{z_2} - {z_3}} \right) = \dfrac{9}{{{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}{\text{ }} \to {\text{(10)}}\]
Using the formula given by equation (9) in equation (7), we get
\[ \Rightarrow \left( {{z_3} - {z_1}} \right) = \dfrac{{16}}{{{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{\text{ }} \to {\text{(11)}}\]
Using the formula given by equation (9) in equation (8), we get
\[ \Rightarrow \left( {{z_1} - {z_2}} \right) = \dfrac{{25}}{{{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}{\text{ }} \to {\text{(12)}}\]
Let x be the value of the expression which we have to evaluate
i.e., $x = \dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}}$
By substituting equations (10), (11) and (12) in the above equation, we get
$
\Rightarrow x = \dfrac{9}{{\left[ {\dfrac{9}{{{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}} \right]}} + \dfrac{{16}}{{\left[ {\dfrac{{16}}{{{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{\text{ }}} \right]}} + \dfrac{{25}}{{\left[ {\dfrac{{25}}{{{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}} \right]}} \\
\Rightarrow x = \dfrac{{9{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}{9} + \dfrac{{16{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{{16}} + \dfrac{{25{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}{{25}} \\
\Rightarrow x = {k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right) + {k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right) + {k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right) \\
\Rightarrow x = {k^2}\left[ {\overline {{z_2}} - \overline {{z_3}} + \overline {{z_3}} - \overline {{z_1}} + \overline {{z_1}} - \overline {{z_2}} } \right] \\
\Rightarrow x = {k^2} \times 0 \\
\Rightarrow x = 0 \\
$
Therefore, the value of the expression $\dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}}$ is 0.
Hence, option A is correct.
Note: Any complex number z can be represented as $z = a + ib$ where a is the real part of the complex number z, b is the imaginary part of the complex number z and $i = \sqrt { - 1} $. All the real numbers are imaginary numbers because any real number r can be represented as $r = r + i\left( 0 \right)$ where the real part is the number itself and the imaginary part is 0.
Complete step-by-step answer:
Given, for any three distinct complex numbers ${z_1},{z_2},{z_3}$
$\dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = \dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = \dfrac{5}{{\left| {{z_1} - {z_2}} \right|}} = k{\text{(say) }} \to {\text{(1)}}$
By considering equation (1), we can write
$
\dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = k \\
\Rightarrow k\left| {{z_2} - {z_3}} \right| = 3 \\
$
By squaring both sides of the above equation, we get
$
\Rightarrow {\left[ {k\left| {{z_2} - {z_3}} \right|} \right]^2} = {3^2} \\
\Rightarrow {k^2}{\left| {{z_2} - {z_3}} \right|^2} = 9{\text{ }} \to {\text{(2)}} \\
$
Again by considering equation (1), we can write
$
\dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = k \\
\Rightarrow k\left| {{z_3} - {z_1}} \right| = 4 \\
$
By squaring both sides of the above equation, we get
$
\Rightarrow {\left[ {k\left| {{z_3} - {z_1}} \right|} \right]^2} = {4^2} \\
\Rightarrow {k^2}{\left| {{z_3} - {z_1}} \right|^2} = 16{\text{ }} \to {\text{(3)}} \\
$
Again by considering equation (1), we can write
$
\dfrac{5}{{\left| {{z_1} - {z_2}} \right|}} = k \\
\Rightarrow k\left| {{z_1} - {z_2}} \right| = 5 \\
$
By squaring both sides of the above equation, we get
$
\Rightarrow {\left[ {k\left| {{z_1} - {z_2}} \right|} \right]^2} = {5^2} \\
\Rightarrow {k^2}{\left| {{z_1} - {z_2}} \right|^2} = 25{\text{ }} \to {\text{(4)}} \\
$
As we know that for any complex number z, the square of the magnitude of this complex number is equal to the product of this complex number with the conjugate of this complex number.
i.e., ${\left| z \right|^2} = z\left( {\overline z } \right){\text{ }} \to {\text{(5)}}$
Using the formula given by equation (5) in equation (2), we get
\[
\Rightarrow {k^2}\left( {{z_2} - {z_3}} \right)\left( {\overline {{z_2} - {z_3}} } \right) = 9 \\
\Rightarrow \left( {{z_2} - {z_3}} \right) = \dfrac{9}{{{k^2}\left( {\overline {{z_2} - {z_3}} } \right)}}{\text{ }} \to {\text{(6)}} \\
\]
Using the formula given by equation (5) in equation (3), we get
\[
\Rightarrow {k^2}\left( {{z_3} - {z_1}} \right)\left( {\overline {{z_3} - {z_1}} } \right) = 16 \\
\Rightarrow \left( {{z_3} - {z_1}} \right) = \dfrac{{16}}{{{k^2}\left( {\overline {{z_3} - {z_1}} } \right)}}{\text{ }} \to {\text{(7)}} \\
\]
Using the formula given by equation (5) in equation (4), we get
\[
\Rightarrow {k^2}\left( {{z_1} - {z_2}} \right)\left( {\overline {{z_1} - {z_2}} } \right) = 25 \\
\Rightarrow \left( {{z_1} - {z_2}} \right) = \dfrac{{25}}{{{k^2}\left( {\overline {{z_1} - {z_2}} } \right)}}{\text{ }} \to {\text{(8)}} \\
\]
For any two complex numbers \[{z_a},{z_b}\], we can write
\[\overline {{z_a} - {z_b}} = \overline {{z_a}} - \overline {{z_b}} {\text{ }} \to {\text{(9)}}\]
Using the formula given by equation (9) in equation (6), we get
\[ \Rightarrow \left( {{z_2} - {z_3}} \right) = \dfrac{9}{{{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}{\text{ }} \to {\text{(10)}}\]
Using the formula given by equation (9) in equation (7), we get
\[ \Rightarrow \left( {{z_3} - {z_1}} \right) = \dfrac{{16}}{{{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{\text{ }} \to {\text{(11)}}\]
Using the formula given by equation (9) in equation (8), we get
\[ \Rightarrow \left( {{z_1} - {z_2}} \right) = \dfrac{{25}}{{{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}{\text{ }} \to {\text{(12)}}\]
Let x be the value of the expression which we have to evaluate
i.e., $x = \dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}}$
By substituting equations (10), (11) and (12) in the above equation, we get
$
\Rightarrow x = \dfrac{9}{{\left[ {\dfrac{9}{{{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}} \right]}} + \dfrac{{16}}{{\left[ {\dfrac{{16}}{{{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{\text{ }}} \right]}} + \dfrac{{25}}{{\left[ {\dfrac{{25}}{{{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}} \right]}} \\
\Rightarrow x = \dfrac{{9{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}{9} + \dfrac{{16{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{{16}} + \dfrac{{25{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}{{25}} \\
\Rightarrow x = {k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right) + {k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right) + {k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right) \\
\Rightarrow x = {k^2}\left[ {\overline {{z_2}} - \overline {{z_3}} + \overline {{z_3}} - \overline {{z_1}} + \overline {{z_1}} - \overline {{z_2}} } \right] \\
\Rightarrow x = {k^2} \times 0 \\
\Rightarrow x = 0 \\
$
Therefore, the value of the expression $\dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}}$ is 0.
Hence, option A is correct.
Note: Any complex number z can be represented as $z = a + ib$ where a is the real part of the complex number z, b is the imaginary part of the complex number z and $i = \sqrt { - 1} $. All the real numbers are imaginary numbers because any real number r can be represented as $r = r + i\left( 0 \right)$ where the real part is the number itself and the imaginary part is 0.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

