
If $z_1$ and $z_2$ are complex numbers, prove that $|z_1+z_2|^2$ = $|z_1|^2+|z_2|^2$ if and only if \[{z_1}\mathop {{z_2}}\limits^\_ \] z is pure imaginary.
Answer
599.4k+ views
Hint:Proceed by opening the square of the term in the LHS. Use identities and open it then observe the results to prove the statement.
Identities:
$ |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2\operatorname{Re} |{z_1}{z_2}| $
$ 2\operatorname{Re} |{z_1}{z_2}| = {z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} $
Complete step-by-step answer:
To prove:
$|z_1+z_2|^2$ = $|z_1|^2+|z_2|^2$ if and only if \[{z_1}\mathop {{z_2}}\limits^\_ \]
Opening the square on the LHS, using the identity::
$ |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2\operatorname{Re} |{z_1}{z_2}| $
We get,
$ |{z_1}{|^2} + |{z_2}{|^2} + 2\operatorname{Re} |{z_1}{z_2}| = |{z_1}{|^2} + |{z_2}{|^2} $
Cancelling the same terms, gives:
$ 2\operatorname{Re} |{z_1}{z_2}| = 0 $
$ 2\operatorname{Re} |{z_1}{z_2}| = {z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} = 0 $
$
{z_1}\mathop {{z_2}}\limits^\_ = - \mathop {{z_1}}\limits^\_ {z_2} \\
{z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} = 0 \\
$
This implies that $ \operatorname{Re} ({z_1}\mathop {{z_2})}\limits^\_ = 0 $
If the real part of this complex is zero then it means that the complex number is purely imaginary.
Note:Other conclusions which can derived from this result are:
$ \dfrac{{{z_1}}}{{{{\mathop z\limits^\_ }_2}}} $ is also purely imaginary and \[{z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} = 0\].
These results are a direct implication of the above proof, so they can be remembered.
Identities:
$ |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2\operatorname{Re} |{z_1}{z_2}| $
$ 2\operatorname{Re} |{z_1}{z_2}| = {z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} $
Complete step-by-step answer:
To prove:
$|z_1+z_2|^2$ = $|z_1|^2+|z_2|^2$ if and only if \[{z_1}\mathop {{z_2}}\limits^\_ \]
Opening the square on the LHS, using the identity::
$ |{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} + 2\operatorname{Re} |{z_1}{z_2}| $
We get,
$ |{z_1}{|^2} + |{z_2}{|^2} + 2\operatorname{Re} |{z_1}{z_2}| = |{z_1}{|^2} + |{z_2}{|^2} $
Cancelling the same terms, gives:
$ 2\operatorname{Re} |{z_1}{z_2}| = 0 $
$ 2\operatorname{Re} |{z_1}{z_2}| = {z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} = 0 $
$
{z_1}\mathop {{z_2}}\limits^\_ = - \mathop {{z_1}}\limits^\_ {z_2} \\
{z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} = 0 \\
$
This implies that $ \operatorname{Re} ({z_1}\mathop {{z_2})}\limits^\_ = 0 $
If the real part of this complex is zero then it means that the complex number is purely imaginary.
Note:Other conclusions which can derived from this result are:
$ \dfrac{{{z_1}}}{{{{\mathop z\limits^\_ }_2}}} $ is also purely imaginary and \[{z_1}\mathop {{z_2}}\limits^\_ + \mathop {{z_1}}\limits^\_ {z_2} = 0\].
These results are a direct implication of the above proof, so they can be remembered.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

