
If $ y=\sin x\sin 2x\sin 3x........\sin nx $ , then $ y' $ is
A. $ \sum\limits_{k=1}^{n}{k\tan kx} $
B. $ y\sum\limits_{k=1}^{n}{k\cot kx} $
C. $ y\sum\limits_{k=1}^{n}{k\tan kx} $
D. $ \sum\limits_{k=1}^{n}{\cot kx} $
Answer
508.2k+ views
Hint: We solve the given equation using the identity formula of logarithm where the base of $ \ln $ is always $ e $ . The first step would be to take a summation form. Then we first define the derivative rule and how the differentiation of function works.
Complete step-by-step answer:
We have $ y =\sin x\sin 2x\sin 3x........\sin nx $ .
We take logarithm both sides to use the form $ \log \left( ab \right)=\log a+\log b $
$ \begin{align}
& \log y \\
& =\log \left( \sin x\sin 2x\sin 3x........\sin nx \right) \\
& =\log \left( \sin x \right)+\log \left( \sin 2x \right)+\log \left( \sin 3x \right).....+\log \left( \sin nx \right) \\
\end{align} $
We differentiate the given function $ \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) $ with respect to $ x $ using the chain rule.
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
\[\begin{align}
& \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{\cos x}{\sin x}+2\dfrac{\cos 2x}{\sin 2x}+....+n\dfrac{\cos nx}{\sin nx} \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\cot x+2\cot 2x+....+n\cot nx=\sum\limits_{k=1}^{n}{k\cot kx} \\
& \Rightarrow \dfrac{dy}{dx}=y\sum\limits_{k=1}^{n}{k\cot kx} \\
\end{align}\]
Therefore, the differentiation of $ y=\sin x\sin 2x\sin 3x........\sin nx $ is $ y\sum\limits_{k=1}^{n}{k\cot kx} $ . The correct option is B.
So, the correct answer is “Option B”.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step-by-step answer:
We have $ y =\sin x\sin 2x\sin 3x........\sin nx $ .
We take logarithm both sides to use the form $ \log \left( ab \right)=\log a+\log b $
$ \begin{align}
& \log y \\
& =\log \left( \sin x\sin 2x\sin 3x........\sin nx \right) \\
& =\log \left( \sin x \right)+\log \left( \sin 2x \right)+\log \left( \sin 3x \right).....+\log \left( \sin nx \right) \\
\end{align} $
We differentiate the given function $ \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) $ with respect to $ x $ using the chain rule.
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
\[\begin{align}
& \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{\cos x}{\sin x}+2\dfrac{\cos 2x}{\sin 2x}+....+n\dfrac{\cos nx}{\sin nx} \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\cot x+2\cot 2x+....+n\cot nx=\sum\limits_{k=1}^{n}{k\cot kx} \\
& \Rightarrow \dfrac{dy}{dx}=y\sum\limits_{k=1}^{n}{k\cot kx} \\
\end{align}\]
Therefore, the differentiation of $ y=\sin x\sin 2x\sin 3x........\sin nx $ is $ y\sum\limits_{k=1}^{n}{k\cot kx} $ . The correct option is B.
So, the correct answer is “Option B”.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

