
If $ y=\sin x\sin 2x\sin 3x........\sin nx $ , then $ y' $ is
A. $ \sum\limits_{k=1}^{n}{k\tan kx} $
B. $ y\sum\limits_{k=1}^{n}{k\cot kx} $
C. $ y\sum\limits_{k=1}^{n}{k\tan kx} $
D. $ \sum\limits_{k=1}^{n}{\cot kx} $
Answer
493.8k+ views
Hint: We solve the given equation using the identity formula of logarithm where the base of $ \ln $ is always $ e $ . The first step would be to take a summation form. Then we first define the derivative rule and how the differentiation of function works.
Complete step-by-step answer:
We have $ y =\sin x\sin 2x\sin 3x........\sin nx $ .
We take logarithm both sides to use the form $ \log \left( ab \right)=\log a+\log b $
$ \begin{align}
& \log y \\
& =\log \left( \sin x\sin 2x\sin 3x........\sin nx \right) \\
& =\log \left( \sin x \right)+\log \left( \sin 2x \right)+\log \left( \sin 3x \right).....+\log \left( \sin nx \right) \\
\end{align} $
We differentiate the given function $ \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) $ with respect to $ x $ using the chain rule.
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
\[\begin{align}
& \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{\cos x}{\sin x}+2\dfrac{\cos 2x}{\sin 2x}+....+n\dfrac{\cos nx}{\sin nx} \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\cot x+2\cot 2x+....+n\cot nx=\sum\limits_{k=1}^{n}{k\cot kx} \\
& \Rightarrow \dfrac{dy}{dx}=y\sum\limits_{k=1}^{n}{k\cot kx} \\
\end{align}\]
Therefore, the differentiation of $ y=\sin x\sin 2x\sin 3x........\sin nx $ is $ y\sum\limits_{k=1}^{n}{k\cot kx} $ . The correct option is B.
So, the correct answer is “Option B”.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step-by-step answer:
We have $ y =\sin x\sin 2x\sin 3x........\sin nx $ .
We take logarithm both sides to use the form $ \log \left( ab \right)=\log a+\log b $
$ \begin{align}
& \log y \\
& =\log \left( \sin x\sin 2x\sin 3x........\sin nx \right) \\
& =\log \left( \sin x \right)+\log \left( \sin 2x \right)+\log \left( \sin 3x \right).....+\log \left( \sin nx \right) \\
\end{align} $
We differentiate the given function $ \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) $ with respect to $ x $ using the chain rule.
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
\[\begin{align}
& \log y=\log \left( \sin x \right)+\log \left( \sin 2x \right)+.....+\log \left( \sin nx \right) \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{\cos x}{\sin x}+2\dfrac{\cos 2x}{\sin 2x}+....+n\dfrac{\cos nx}{\sin nx} \\
& \Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\cot x+2\cot 2x+....+n\cot nx=\sum\limits_{k=1}^{n}{k\cot kx} \\
& \Rightarrow \dfrac{dy}{dx}=y\sum\limits_{k=1}^{n}{k\cot kx} \\
\end{align}\]
Therefore, the differentiation of $ y=\sin x\sin 2x\sin 3x........\sin nx $ is $ y\sum\limits_{k=1}^{n}{k\cot kx} $ . The correct option is B.
So, the correct answer is “Option B”.
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

