
If \[y=\sin \left( m{{\sin }^{-1}}x \right)\], then \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y\] is ?
Answer
521.4k+ views
Hint: In this problem, we have to find the value of the given derivative expression \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y\] if \[y=\sin \left( m{{\sin }^{-1}}x \right)\]. We can first take the given condition \[y=\sin \left( m{{\sin }^{-1}}x \right)\], we can differentiate it on both sides, we can again find the second derivative using the \[\dfrac{u}{v}\] method, where \[\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}\]. We can then simplify the steps by substituting the assumed values and find the value.
Complete step by step answer:
Here we have to find the value of \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y\].
We are given that,
\[\Rightarrow y=\sin \left( m{{\sin }^{-1}}x \right)\]…….. (1)
We can now differentiate on both sides, we get
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( m{{\sin }^{-1}}x \right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}}\]
We can now simplify the above step, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{m\cos \left( m{{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}\]……….. (2)
We can now find the second derivative using the \[\dfrac{u}{v}\] method, where \[\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}\].
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( \sqrt{1-{{x}^{2}}} \right)\left( -\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}}-\left( \cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times \left( 0-2x \right)}{{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}} \right]\]
We can now simplify the above step by cancelling similar terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+\left( \cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{x}{\sqrt{1-{{x}^{2}}}}}{1-{{x}^{2}}} \right]\]
We can now write the denominator separately for each term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}}+\dfrac{\left( x\cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}\sqrt{1-{{x}^{2}}}} \right]\]
We can now substitute the derivative (2), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}}+\dfrac{x\dfrac{dy}{dx}}{1-{{x}^{2}}} \right]\]
We can see that we have common denominator now, so we can multiply \[1-{{x}^{2}}\] on both sides, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+x\dfrac{dy}{dx} \right]\]
We can now multiply the term m insides, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left[ \left( -{{m}^{2}}\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+mx\dfrac{dy}{dx} \right]\]
We can now substitute (1), in the above step, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{m}^{2}}y+mx\dfrac{dy}{dx}\]
We can now add \[-{{m}^{2}}y+mx\dfrac{dy}{dx}\] on both sides, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-mx\dfrac{dy}{dx}+{{m}^{2}}y=0\]
Therefore, the value of \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y\] is 0.
Note: We should always remember that, if we have terms in fraction, we can differentiate it using the \[\dfrac{u}{v}\] method, where \[\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}\]. We should also know the differentiation formula to differentiate the terms and simplify to find the required answer.
Complete step by step answer:
Here we have to find the value of \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y\].
We are given that,
\[\Rightarrow y=\sin \left( m{{\sin }^{-1}}x \right)\]…….. (1)
We can now differentiate on both sides, we get
\[\Rightarrow \dfrac{dy}{dx}=\cos \left( m{{\sin }^{-1}}x \right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}}\]
We can now simplify the above step, we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{m\cos \left( m{{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}\]……….. (2)
We can now find the second derivative using the \[\dfrac{u}{v}\] method, where \[\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}\].
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( \sqrt{1-{{x}^{2}}} \right)\left( -\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}}-\left( \cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times \left( 0-2x \right)}{{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}} \right]\]
We can now simplify the above step by cancelling similar terms, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+\left( \cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{x}{\sqrt{1-{{x}^{2}}}}}{1-{{x}^{2}}} \right]\]
We can now write the denominator separately for each term, we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}}+\dfrac{\left( x\cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}\sqrt{1-{{x}^{2}}}} \right]\]
We can now substitute the derivative (2), we get
\[\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}}+\dfrac{x\dfrac{dy}{dx}}{1-{{x}^{2}}} \right]\]
We can see that we have common denominator now, so we can multiply \[1-{{x}^{2}}\] on both sides, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+x\dfrac{dy}{dx} \right]\]
We can now multiply the term m insides, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left[ \left( -{{m}^{2}}\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+mx\dfrac{dy}{dx} \right]\]
We can now substitute (1), in the above step, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{m}^{2}}y+mx\dfrac{dy}{dx}\]
We can now add \[-{{m}^{2}}y+mx\dfrac{dy}{dx}\] on both sides, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-mx\dfrac{dy}{dx}+{{m}^{2}}y=0\]
Therefore, the value of \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y\] is 0.
Note: We should always remember that, if we have terms in fraction, we can differentiate it using the \[\dfrac{u}{v}\] method, where \[\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}\]. We should also know the differentiation formula to differentiate the terms and simplify to find the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

