
If $y={{\left( {{\sin }^{-1}}x \right)}^{2}}$, then $\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}$ is equal to
A. 1
B. 0
C. $-1$
D. 2
Answer
494.1k+ views
Hint: We first define the chain rule and how the differentiation of composite function works. We differentiate the main function with respect to the intermediate function and then take differentiation of the intermediate function with respect to $x$. We take multiplication of these two different differentiated values.
Complete step by step answer:
We differentiate the given function $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{x}^{2}}$ and the other function is $h\left( x \right)={{\sin }^{-1}}x$.
We have $goh\left( x \right)=g\left( {{\sin }^{-1}}x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$. We take this as ours $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\left( {{\sin }^{-1}}x \right)}^{2}} \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$, we take differentiation of $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$ with respect to the function $h\left( x \right)={{\sin }^{-1}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\sin }^{-1}}x$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{x}^{2}}$ is ${{g}^{'}}\left( x \right)=2x$ and differentiation of $h\left( x \right)={{\sin }^{-1}}x$ is \[{{h}^{'}}\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. We apply the formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ {{\sin }^{-1}}x \right]}\left[ {{\left( {{\sin }^{-1}}x \right)}^{2}} \right]\times \dfrac{d\left[ {{\sin }^{-1}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=2{{\sin }^{-1}}x\left[ \dfrac{1}{\sqrt{1-{{x}^{2}}}} \right]=\dfrac{2{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
We take square of \[\dfrac{dy}{dx}=\dfrac{2{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\] and get \[{{\left( \dfrac{dy}{dx} \right)}^{2}}=\dfrac{4{{\left( {{\sin }^{-1}}x \right)}^{2}}}{1-{{x}^{2}}}\].
Now replacing the values, we get \[\left( 1-{{x}^{2}} \right){{\left( \dfrac{dy}{dx} \right)}^{2}}=4{{\left( {{\sin }^{-1}}x \right)}^{2}}=4y\].
We differentiate again to get
\[\begin{align}
& \left( 1-{{x}^{2}} \right){{\left( \dfrac{dy}{dx} \right)}^{2}}=4{{\left( {{\sin }^{-1}}x \right)}^{2}}=4y \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\times 2\left( \dfrac{dy}{dx} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-2x{{\left( \dfrac{dy}{dx} \right)}^{2}}=4\dfrac{dy}{dx} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}=2 \\
\end{align}\]
Therefore, $\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}$ is equal to 2.
Note:
We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancellation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Complete step by step answer:
We differentiate the given function $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$ with respect to $x$ using the chain rule.
Here we have a composite function where the main function is $g\left( x \right)={{x}^{2}}$ and the other function is $h\left( x \right)={{\sin }^{-1}}x$.
We have $goh\left( x \right)=g\left( {{\sin }^{-1}}x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$. We take this as ours $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$.
We need to find the value of $\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ {{\left( {{\sin }^{-1}}x \right)}^{2}} \right]$. We know $f\left( x \right)=goh\left( x \right)$.
Differentiating $f\left( x \right)=goh\left( x \right)$, we get
\[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ goh\left( x \right) \right]=\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}={{g}^{'}}\left[ h\left( x \right) \right]{{h}^{'}}\left( x \right)\].
The above-mentioned rule is the chain rule.
The chain rule allows to differentiate with respect to the function $h\left( x \right)$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)$ with respect to $x$.
For the function $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$, we take differentiation of $f\left( x \right)={{\left( {{\sin }^{-1}}x \right)}^{2}}$ with respect to the function $h\left( x \right)={{\sin }^{-1}}x$ instead of $x$ and after that we need to take the differentiated form of $h\left( x \right)={{\sin }^{-1}}x$ with respect to $x$.
We know that differentiation of $g\left( x \right)={{x}^{2}}$ is ${{g}^{'}}\left( x \right)=2x$ and differentiation of $h\left( x \right)={{\sin }^{-1}}x$ is \[{{h}^{'}}\left( x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. We apply the formula of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{d\left[ {{\sin }^{-1}}x \right]}\left[ {{\left( {{\sin }^{-1}}x \right)}^{2}} \right]\times \dfrac{d\left[ {{\sin }^{-1}}x \right]}{dx}\]
We place the values of the differentiations and get
\[\Rightarrow \dfrac{d}{dx}\left[ f\left( x \right) \right]=2{{\sin }^{-1}}x\left[ \dfrac{1}{\sqrt{1-{{x}^{2}}}} \right]=\dfrac{2{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
We take square of \[\dfrac{dy}{dx}=\dfrac{2{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\] and get \[{{\left( \dfrac{dy}{dx} \right)}^{2}}=\dfrac{4{{\left( {{\sin }^{-1}}x \right)}^{2}}}{1-{{x}^{2}}}\].
Now replacing the values, we get \[\left( 1-{{x}^{2}} \right){{\left( \dfrac{dy}{dx} \right)}^{2}}=4{{\left( {{\sin }^{-1}}x \right)}^{2}}=4y\].
We differentiate again to get
\[\begin{align}
& \left( 1-{{x}^{2}} \right){{\left( \dfrac{dy}{dx} \right)}^{2}}=4{{\left( {{\sin }^{-1}}x \right)}^{2}}=4y \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\times 2\left( \dfrac{dy}{dx} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-2x{{\left( \dfrac{dy}{dx} \right)}^{2}}=4\dfrac{dy}{dx} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}=2 \\
\end{align}\]
Therefore, $\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}$ is equal to 2.
Note:
We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancellation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

