
If \[y=\left\{ {{\cot }^{-1}}\sqrt{\dfrac{1+x}{1-x}} \right\}\] for – 1 < x < 1 then \[\dfrac{dy}{dx}\] is equal to
Answer
606.6k+ views
Hint: In order to solve this question, we should know about a few inverse trigonometric ratio derivatives like \[\dfrac{d}{dx}\left( {{\cot }^{-1}}x \right)=\dfrac{-1}{{{x}^{2}}+1}\]. We should also remember that the derivative of \[\sqrt{x}\], that is \[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}},\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. By using these properties, we can solve this question.
Complete step-by-step answer:
In this question, we have been given an equation \[y=\left\{ {{\cot }^{-1}}\sqrt{\dfrac{1+x}{1-x}} \right\}\] for – 1 < x < 1 and we have been asked to find \[\dfrac{dy}{dx}\]. To solve this question, we should have the knowledge of a few standard derivatives like \[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}},\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. Now, to solve this, we will first find the derivative of \[{{\cot }^{-1}}\] and then the derivative of square root and then the derivative of \[\dfrac{1+x}{1-x}\]. So, we can write,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left\{ {{\cot }^{-1}}\sqrt{\dfrac{1+x}{1-x}} \right\}\]
Now, we know that \[\dfrac{d}{dx}\left( {{\cot }^{-1}}x \right)=\dfrac{-1}{{{x}^{2}}+1}\]. So, for \[x=\sqrt{\dfrac{1+x}{1-x}}\], we get,
\[\dfrac{dy}{dx}=\dfrac{-1}{{{\left( \sqrt{\dfrac{1+x}{1-x}} \right)}^{2}}+1}.\dfrac{d}{dx}\left( \sqrt{\dfrac{1+x}{1-x}} \right)\]
Now, we know that \[{{\left( \sqrt{x} \right)}^{2}}=x\]. So, for \[x=\dfrac{1+x}{1-x}\], we get,
\[\dfrac{dy}{dx}=\dfrac{-1}{\dfrac{1+x}{1-x}+1}.\dfrac{d}{dx}\left( \sqrt{\dfrac{1+x}{1-x}} \right)\]
And we can further write it as
\[\dfrac{dy}{dx}=\dfrac{-1}{\dfrac{1+x+1-x}{1-x}}.\dfrac{d}{dx}\left( \sqrt{\dfrac{1+x}{1-x}} \right)\]
\[\dfrac{dy}{dx}=\dfrac{-1\left( 1-x \right)}{2}.\dfrac{d}{dx}\sqrt{\dfrac{1+x}{1-x}}\]
\[\dfrac{dy}{dx}=\left( \dfrac{x-1}{2} \right)\dfrac{d}{dx}\sqrt{\dfrac{1+x}{1-x}}\]
Now, we know that
\[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}\]. So, for \[x=\dfrac{1+x}{1-x}\], we get,
\[\dfrac{dy}{dx}=\left( \dfrac{x-1}{2} \right).\dfrac{1}{2\sqrt{\dfrac{1+x}{1-x}}}\dfrac{d}{dx}\left( \dfrac{1+x}{1-x} \right)\]
And we can further write it as,
\[\dfrac{dy}{dx}=\left( \dfrac{x-1}{2} \right).\left( \dfrac{1}{2}\sqrt{\dfrac{1-x}{1+x}} \right)\dfrac{d}{dx}\left( \dfrac{1+x}{1-x} \right)\]
\[\dfrac{dy}{dx}=\dfrac{\left( x-1 \right)\sqrt{1-x}}{4\sqrt{1+x}}\dfrac{d}{dx}\left( \dfrac{1+x}{1-x} \right)\]
Now, we know that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, for u = 1 + x and v = 1 – x, we can write \[\dfrac{du}{dx}=1\text{ and }\dfrac{dv}{dx}=-1\]. Therefore, we get,
\[\dfrac{dy}{dx}=\dfrac{\left( x-1 \right)\sqrt{1-x}}{4\sqrt{1+x}}\left[ \dfrac{\left( 1-x \right)\left( 1 \right)-\left( 1+x \right)\left( -1 \right)}{{{\left( 1-x \right)}^{2}}} \right]\]
Now, we will simplify it further to get \[\dfrac{dy}{dx}\]. So, we get,
\[\dfrac{dy}{dx}=\dfrac{\left( x-1 \right)\sqrt{1-x}}{4\sqrt{1+x}}\left[ \dfrac{1-x+1+x}{{{\left( x-1 \right)}^{2}}} \right]\]
\[\dfrac{dy}{dx}=\dfrac{\sqrt{1-x}}{4\sqrt{1+x}}\left( \dfrac{2}{x-1} \right)\]
Now, we will write (x – 1) = – (1 – x). So, we will get,
\[\dfrac{dy}{dx}=\dfrac{-\sqrt{1-x}}{2\sqrt{1+x}}\left( \dfrac{1}{1-x} \right)\]
\[\dfrac{dy}{dx}=\dfrac{-{{\left( 1-x \right)}^{\dfrac{1}{2}-1}}}{2\sqrt{1+x}}\]
\[\dfrac{dy}{dx}=\dfrac{-{{\left( 1-x \right)}^{\dfrac{-1}{2}}}}{2\sqrt{1+x}}\]
And we know that \[{{x}^{\dfrac{-1}{2}}}=\dfrac{1}{\sqrt{x}}\]. So for x = 1 – x, we get,
\[\dfrac{dy}{dx}=\dfrac{-1}{2\sqrt{\left( 1+x \right)\left( 1-x \right)}}\]
And we can further write it as,
\[\dfrac{dy}{dx}=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\]
Hence, we can say that the derivative of \[y={{\cot }^{-1}}\sqrt{\dfrac{1+x}{1-x}}\] for -1 < x < 1 is \[\dfrac{dy}{dx}=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\].
Note: While solving this question, we need to be very careful because there are chances of calculation mistakes. Also, we need to remember a few derivatives like \[\dfrac{d}{dx}\left( {{\cot }^{-1}}x \right)=\dfrac{-1}{{{x}^{2}}+1},\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}},\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. We might make a mistake while writing the derivatives of \[{{\cot }^{-1}}x\] and \[\dfrac{u}{v}\] type derivative. So, we have to be very focused and careful.
Complete step-by-step answer:
In this question, we have been given an equation \[y=\left\{ {{\cot }^{-1}}\sqrt{\dfrac{1+x}{1-x}} \right\}\] for – 1 < x < 1 and we have been asked to find \[\dfrac{dy}{dx}\]. To solve this question, we should have the knowledge of a few standard derivatives like \[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}},\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. Now, to solve this, we will first find the derivative of \[{{\cot }^{-1}}\] and then the derivative of square root and then the derivative of \[\dfrac{1+x}{1-x}\]. So, we can write,
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left\{ {{\cot }^{-1}}\sqrt{\dfrac{1+x}{1-x}} \right\}\]
Now, we know that \[\dfrac{d}{dx}\left( {{\cot }^{-1}}x \right)=\dfrac{-1}{{{x}^{2}}+1}\]. So, for \[x=\sqrt{\dfrac{1+x}{1-x}}\], we get,
\[\dfrac{dy}{dx}=\dfrac{-1}{{{\left( \sqrt{\dfrac{1+x}{1-x}} \right)}^{2}}+1}.\dfrac{d}{dx}\left( \sqrt{\dfrac{1+x}{1-x}} \right)\]
Now, we know that \[{{\left( \sqrt{x} \right)}^{2}}=x\]. So, for \[x=\dfrac{1+x}{1-x}\], we get,
\[\dfrac{dy}{dx}=\dfrac{-1}{\dfrac{1+x}{1-x}+1}.\dfrac{d}{dx}\left( \sqrt{\dfrac{1+x}{1-x}} \right)\]
And we can further write it as
\[\dfrac{dy}{dx}=\dfrac{-1}{\dfrac{1+x+1-x}{1-x}}.\dfrac{d}{dx}\left( \sqrt{\dfrac{1+x}{1-x}} \right)\]
\[\dfrac{dy}{dx}=\dfrac{-1\left( 1-x \right)}{2}.\dfrac{d}{dx}\sqrt{\dfrac{1+x}{1-x}}\]
\[\dfrac{dy}{dx}=\left( \dfrac{x-1}{2} \right)\dfrac{d}{dx}\sqrt{\dfrac{1+x}{1-x}}\]
Now, we know that
\[\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}\]. So, for \[x=\dfrac{1+x}{1-x}\], we get,
\[\dfrac{dy}{dx}=\left( \dfrac{x-1}{2} \right).\dfrac{1}{2\sqrt{\dfrac{1+x}{1-x}}}\dfrac{d}{dx}\left( \dfrac{1+x}{1-x} \right)\]
And we can further write it as,
\[\dfrac{dy}{dx}=\left( \dfrac{x-1}{2} \right).\left( \dfrac{1}{2}\sqrt{\dfrac{1-x}{1+x}} \right)\dfrac{d}{dx}\left( \dfrac{1+x}{1-x} \right)\]
\[\dfrac{dy}{dx}=\dfrac{\left( x-1 \right)\sqrt{1-x}}{4\sqrt{1+x}}\dfrac{d}{dx}\left( \dfrac{1+x}{1-x} \right)\]
Now, we know that \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. So, for u = 1 + x and v = 1 – x, we can write \[\dfrac{du}{dx}=1\text{ and }\dfrac{dv}{dx}=-1\]. Therefore, we get,
\[\dfrac{dy}{dx}=\dfrac{\left( x-1 \right)\sqrt{1-x}}{4\sqrt{1+x}}\left[ \dfrac{\left( 1-x \right)\left( 1 \right)-\left( 1+x \right)\left( -1 \right)}{{{\left( 1-x \right)}^{2}}} \right]\]
Now, we will simplify it further to get \[\dfrac{dy}{dx}\]. So, we get,
\[\dfrac{dy}{dx}=\dfrac{\left( x-1 \right)\sqrt{1-x}}{4\sqrt{1+x}}\left[ \dfrac{1-x+1+x}{{{\left( x-1 \right)}^{2}}} \right]\]
\[\dfrac{dy}{dx}=\dfrac{\sqrt{1-x}}{4\sqrt{1+x}}\left( \dfrac{2}{x-1} \right)\]
Now, we will write (x – 1) = – (1 – x). So, we will get,
\[\dfrac{dy}{dx}=\dfrac{-\sqrt{1-x}}{2\sqrt{1+x}}\left( \dfrac{1}{1-x} \right)\]
\[\dfrac{dy}{dx}=\dfrac{-{{\left( 1-x \right)}^{\dfrac{1}{2}-1}}}{2\sqrt{1+x}}\]
\[\dfrac{dy}{dx}=\dfrac{-{{\left( 1-x \right)}^{\dfrac{-1}{2}}}}{2\sqrt{1+x}}\]
And we know that \[{{x}^{\dfrac{-1}{2}}}=\dfrac{1}{\sqrt{x}}\]. So for x = 1 – x, we get,
\[\dfrac{dy}{dx}=\dfrac{-1}{2\sqrt{\left( 1+x \right)\left( 1-x \right)}}\]
And we can further write it as,
\[\dfrac{dy}{dx}=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\]
Hence, we can say that the derivative of \[y={{\cot }^{-1}}\sqrt{\dfrac{1+x}{1-x}}\] for -1 < x < 1 is \[\dfrac{dy}{dx}=\dfrac{-1}{2\sqrt{1-{{x}^{2}}}}\].
Note: While solving this question, we need to be very careful because there are chances of calculation mistakes. Also, we need to remember a few derivatives like \[\dfrac{d}{dx}\left( {{\cot }^{-1}}x \right)=\dfrac{-1}{{{x}^{2}}+1},\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}},\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)\text{ and }\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}\]. We might make a mistake while writing the derivatives of \[{{\cot }^{-1}}x\] and \[\dfrac{u}{v}\] type derivative. So, we have to be very focused and careful.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

