
If ${y^{\dfrac{1}{m}}} + {y^{\dfrac{{ - 1}}{m}}} = 2x$ , then $\left( {{x^2} - 1} \right){y_2} + x{y_1}$ is equal to
$
\left( a \right){m^2}y \\
\left( b \right) - {m^2}y \\
\left( c \right) \pm {m^2}y \\
\left( d \right){\text{None of these}} \\
$
Answer
615.6k+ views
Hint-In this question, we use the concept of first and second derivatives. We have to differentiate the given equation with respect to x and calculate the value of first derivative ${y_1} = \dfrac{{dy}}{{dx}}$ and second derivative ${y_2} = \dfrac{{{d^2}y}}{{d{x^2}}}$ then put the value of derivatives in $\left( {{x^2} - 1} \right){y_2} + x{y_1}$ .
Complete step-by-step answer:
Given, ${y^{\dfrac{1}{m}}} + {y^{\dfrac{{ - 1}}{m}}} = 2x$
We can write as
$
\Rightarrow {y^{\dfrac{1}{m}}} + \dfrac{1}{{{y^{\dfrac{1}{m}}}}} = 2x \\
\Rightarrow {\left( {{y^{\dfrac{1}{m}}}} \right)^2} + 1 = 2x{y^{\dfrac{1}{m}}} \\
\Rightarrow {\left( {{y^{\dfrac{1}{m}}}} \right)^2} - 2x{y^{\dfrac{1}{m}}} + 1 = 0..............\left( 1 \right) \\
$
Let $t = {y^{\dfrac{1}{m}}}$ and put in (1) equation.
Now, ${\left( t \right)^2} - 2xt + 1 = 0$
We can see the quadratic equation in t. So, we calculate the roots of the quadratic equation by using the Sridharacharya formula. According to Sridharacharya formula, if a quadratic equation $a{x^2} + bx + c = 0$ so the roots of this quadratic equation is $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ .
$
\Rightarrow t = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2} \\
\Rightarrow t = x \pm \sqrt {{x^2} - 1} \\
$
Now, ${y^{\dfrac{1}{m}}} = x \pm \sqrt {{x^2} - 1} $
$ \Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}................\left( 2 \right)$
Differentiate (2) equation with respect to x.
\[
{y_1} = \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\left( {x \pm \sqrt {{x^2} - 1} } \right)}^m}} \right) \\
\Rightarrow {y_1} = m{\left( {x \pm \sqrt {{x^2} - 1} } \right)^{m - 1}}\left( {1 \pm \dfrac{x}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow {y_1} = m{\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}\left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\
\]
We know, $y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}$
\[ \Rightarrow {y_1} = \dfrac{{my}}{{\sqrt {{x^2} - 1} }}\]
Now, squaring both sides
\[
\Rightarrow {\left( {{y_1}} \right)^2} = \dfrac{{{m^2}{y^2}}}{{{x^2} - 1}} \\
\Rightarrow \left( {{x^2} - 1} \right){\left( {{y_1}} \right)^2} = {m^2}{y^2}...........\left( 3 \right) \\
\]
Differentiate (3) equation with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\left( {{x^2} - 1} \right){{\left( {{y_1}} \right)}^2}} \right) = \dfrac{{d\left( {{m^2}{y^2}} \right)}}{{dx}}\]
Apply product rule of differentiation and ${y_2} = \dfrac{{{d^2}y}}{{d{x^2}}}$ .
\[
\Rightarrow \left( {{y_1}^2} \right) \times 2x + \left( {{x^2} - 1} \right) \times 2{y_1} \times {y_2} = {m^2} \times 2y \times {y_1} \\
\Rightarrow 2{y_1}\left( {\left( {{x^2} - 1} \right){y_2} + x{y_1}} \right) = 2{y_1} \times {m^2}y \\
\]
From above equation \[2{y_1}\] cancel from both sides.
\[\left( {{x^2} - 1} \right){y_2} + x{y_1} = {m^2}y\]
So, the correct option is (a).
Note-Whenever we face such types of problems we use some important points. First we convert given equation into y=f(x) by using quadratic formula then differentiate y=f(x) with respect to x and put the values of first and second derivative in $\left( {{x^2} - 1} \right){y_2} + x{y_1}$ . So, we get the required answer.
Complete step-by-step answer:
Given, ${y^{\dfrac{1}{m}}} + {y^{\dfrac{{ - 1}}{m}}} = 2x$
We can write as
$
\Rightarrow {y^{\dfrac{1}{m}}} + \dfrac{1}{{{y^{\dfrac{1}{m}}}}} = 2x \\
\Rightarrow {\left( {{y^{\dfrac{1}{m}}}} \right)^2} + 1 = 2x{y^{\dfrac{1}{m}}} \\
\Rightarrow {\left( {{y^{\dfrac{1}{m}}}} \right)^2} - 2x{y^{\dfrac{1}{m}}} + 1 = 0..............\left( 1 \right) \\
$
Let $t = {y^{\dfrac{1}{m}}}$ and put in (1) equation.
Now, ${\left( t \right)^2} - 2xt + 1 = 0$
We can see the quadratic equation in t. So, we calculate the roots of the quadratic equation by using the Sridharacharya formula. According to Sridharacharya formula, if a quadratic equation $a{x^2} + bx + c = 0$ so the roots of this quadratic equation is $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ .
$
\Rightarrow t = \dfrac{{2x \pm \sqrt {4{x^2} - 4} }}{2} \\
\Rightarrow t = x \pm \sqrt {{x^2} - 1} \\
$
Now, ${y^{\dfrac{1}{m}}} = x \pm \sqrt {{x^2} - 1} $
$ \Rightarrow y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}................\left( 2 \right)$
Differentiate (2) equation with respect to x.
\[
{y_1} = \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {{{\left( {x \pm \sqrt {{x^2} - 1} } \right)}^m}} \right) \\
\Rightarrow {y_1} = m{\left( {x \pm \sqrt {{x^2} - 1} } \right)^{m - 1}}\left( {1 \pm \dfrac{x}{{\sqrt {{x^2} - 1} }}} \right) \\
\Rightarrow {y_1} = m{\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}\left( {\dfrac{1}{{\sqrt {{x^2} - 1} }}} \right) \\
\]
We know, $y = {\left( {x \pm \sqrt {{x^2} - 1} } \right)^m}$
\[ \Rightarrow {y_1} = \dfrac{{my}}{{\sqrt {{x^2} - 1} }}\]
Now, squaring both sides
\[
\Rightarrow {\left( {{y_1}} \right)^2} = \dfrac{{{m^2}{y^2}}}{{{x^2} - 1}} \\
\Rightarrow \left( {{x^2} - 1} \right){\left( {{y_1}} \right)^2} = {m^2}{y^2}...........\left( 3 \right) \\
\]
Differentiate (3) equation with respect to x.
\[ \Rightarrow \dfrac{d}{{dx}}\left( {\left( {{x^2} - 1} \right){{\left( {{y_1}} \right)}^2}} \right) = \dfrac{{d\left( {{m^2}{y^2}} \right)}}{{dx}}\]
Apply product rule of differentiation and ${y_2} = \dfrac{{{d^2}y}}{{d{x^2}}}$ .
\[
\Rightarrow \left( {{y_1}^2} \right) \times 2x + \left( {{x^2} - 1} \right) \times 2{y_1} \times {y_2} = {m^2} \times 2y \times {y_1} \\
\Rightarrow 2{y_1}\left( {\left( {{x^2} - 1} \right){y_2} + x{y_1}} \right) = 2{y_1} \times {m^2}y \\
\]
From above equation \[2{y_1}\] cancel from both sides.
\[\left( {{x^2} - 1} \right){y_2} + x{y_1} = {m^2}y\]
So, the correct option is (a).
Note-Whenever we face such types of problems we use some important points. First we convert given equation into y=f(x) by using quadratic formula then differentiate y=f(x) with respect to x and put the values of first and second derivative in $\left( {{x^2} - 1} \right){y_2} + x{y_1}$ . So, we get the required answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

