
If $$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$, then prove that $$\sin y=\tan^{2} \dfrac{x}{2}$$.
Answer
584.4k+ views
Hint: In this question it is given that $$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$,
We have to prove that $$\sin y=\tan^{2} \dfrac{x}{2}$$.
So to find the solution we have to first convert the $$\cot^{-1} \theta$$ into $$\tan^{-1} \theta$$ and after that we have to use the formula,
$$\tan^{-1} \alpha -\tan^{-1} \beta =\tan^{-1} \left( \dfrac{\alpha -\beta }{1+\alpha \beta } \right) $$.........(1)
After using it by simplification we are able to find the solution.
Complete step-by-step solution:
Given,
$$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1}{\sqrt{\cos x} } \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$ [$$\because \cot^{-1} \alpha =\tan^{-1} \dfrac{1}{\alpha }$$]
Now by using the formula (1) we can write the above equation as,
$$ y=\tan^{-1} \left( \dfrac{\dfrac{1}{\sqrt{\cos x} } -\sqrt{\cos x} }{1+\dfrac{1}{\sqrt{\cos x} } \cdot \sqrt{\cos x} } \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\left( \sqrt{\cos x} \right)^{2} }{\sqrt{\cos x} } }{1+1} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\cos x}{\sqrt{\cos x} } }{2} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right)$$
$$\Rightarrow \tan y=\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) $$
Now as we know that,$$\cot \theta =\dfrac{1}{\tan \theta }$$, therefore the above equation can be written as,
$$\cot y=\dfrac{1}{\tan y}$$
$$\Rightarrow \cot y=\dfrac{1}{\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) }$$
$$\Rightarrow \cot y=\dfrac{2\sqrt{\cos x} }{1-\cos x}$$............(1)
Now as we know that, $$\csc^{2} \theta =1+\cot^{2} \theta$$
So by using the above formula we can write,
$$\csc^{2} y=1+\cot^{2} y$$
$$\Rightarrow \csc^{2} y=1+\left( \dfrac{2\sqrt{\cos x} }{1-\cos x} \right)^{2} $$ [from equation (1)]
$$\Rightarrow \csc^{2} y=1+\dfrac{\left( 2\sqrt{\cos x} \right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=1+\dfrac{2^{2}\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{\left( 1-\cos x\right)^{2} +4\cos x}{\left( 1-\cos x\right)^{2} }$$..........(2)
As we know that $$\left( a-b\right)^{2} =a^{2}-2ab+b^{2}$$
By using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$ \csc^{2} y=\dfrac{1^{2}-2\cos x+\cos^{2} x+4\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}-2\cos x+4\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}+2\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
Now again as we know that $$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$
So by using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$\csc^{2} y=\dfrac{\left( 1+\cos x\right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\left( \dfrac{1+\cos x}{1-\cos x} \right)^{2} $$
$$\Rightarrow \csc y=\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [Omitting square from the both side]
$$\Rightarrow \dfrac{1}{\sin x} =\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [$$\because \csc \theta =\dfrac{1}{\sin \theta }$$]
$$\Rightarrow \sin x=\left( \dfrac{1-\cos x}{1+\cos x} \right) $$
Now we have to use two trigonometric identities, which are,
$$1+\cos \theta =2\cos^{2} \dfrac{\theta }{2}$$ and
$$1-\cos \theta =2\sin^{2} \dfrac{\theta }{2}$$
So by using these identity we can write the above equation as,
$$ \sin x=\left( \dfrac{2\sin^{2} \dfrac{x}{2} }{2\cos^{2} \dfrac{x}{2} } \right) $$ [where $$\theta =x$$]
$$\Rightarrow \sin x=\tan^{2} \dfrac{x}{2}$$
Hence proved.
Note: While solving we have transformed $$\tan y$$ into $$\cot y$$, this is because as we know that our solution is in the form of $$\sin y$$ and to convert it into $$\sin y$$ we need $$\csc y$$ and so if we transform $$\tan y$$ into $$\cot y$$ then we can easily transform $$\cot y$$ into $$\csc y$$ by the formula $$\csc^{2} y=1+\cot^{2} y$$.
We have to prove that $$\sin y=\tan^{2} \dfrac{x}{2}$$.
So to find the solution we have to first convert the $$\cot^{-1} \theta$$ into $$\tan^{-1} \theta$$ and after that we have to use the formula,
$$\tan^{-1} \alpha -\tan^{-1} \beta =\tan^{-1} \left( \dfrac{\alpha -\beta }{1+\alpha \beta } \right) $$.........(1)
After using it by simplification we are able to find the solution.
Complete step-by-step solution:
Given,
$$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1}{\sqrt{\cos x} } \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$ [$$\because \cot^{-1} \alpha =\tan^{-1} \dfrac{1}{\alpha }$$]
Now by using the formula (1) we can write the above equation as,
$$ y=\tan^{-1} \left( \dfrac{\dfrac{1}{\sqrt{\cos x} } -\sqrt{\cos x} }{1+\dfrac{1}{\sqrt{\cos x} } \cdot \sqrt{\cos x} } \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\left( \sqrt{\cos x} \right)^{2} }{\sqrt{\cos x} } }{1+1} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\cos x}{\sqrt{\cos x} } }{2} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right)$$
$$\Rightarrow \tan y=\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) $$
Now as we know that,$$\cot \theta =\dfrac{1}{\tan \theta }$$, therefore the above equation can be written as,
$$\cot y=\dfrac{1}{\tan y}$$
$$\Rightarrow \cot y=\dfrac{1}{\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) }$$
$$\Rightarrow \cot y=\dfrac{2\sqrt{\cos x} }{1-\cos x}$$............(1)
Now as we know that, $$\csc^{2} \theta =1+\cot^{2} \theta$$
So by using the above formula we can write,
$$\csc^{2} y=1+\cot^{2} y$$
$$\Rightarrow \csc^{2} y=1+\left( \dfrac{2\sqrt{\cos x} }{1-\cos x} \right)^{2} $$ [from equation (1)]
$$\Rightarrow \csc^{2} y=1+\dfrac{\left( 2\sqrt{\cos x} \right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=1+\dfrac{2^{2}\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{\left( 1-\cos x\right)^{2} +4\cos x}{\left( 1-\cos x\right)^{2} }$$..........(2)
As we know that $$\left( a-b\right)^{2} =a^{2}-2ab+b^{2}$$
By using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$ \csc^{2} y=\dfrac{1^{2}-2\cos x+\cos^{2} x+4\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}-2\cos x+4\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}+2\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
Now again as we know that $$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$
So by using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$\csc^{2} y=\dfrac{\left( 1+\cos x\right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\left( \dfrac{1+\cos x}{1-\cos x} \right)^{2} $$
$$\Rightarrow \csc y=\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [Omitting square from the both side]
$$\Rightarrow \dfrac{1}{\sin x} =\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [$$\because \csc \theta =\dfrac{1}{\sin \theta }$$]
$$\Rightarrow \sin x=\left( \dfrac{1-\cos x}{1+\cos x} \right) $$
Now we have to use two trigonometric identities, which are,
$$1+\cos \theta =2\cos^{2} \dfrac{\theta }{2}$$ and
$$1-\cos \theta =2\sin^{2} \dfrac{\theta }{2}$$
So by using these identity we can write the above equation as,
$$ \sin x=\left( \dfrac{2\sin^{2} \dfrac{x}{2} }{2\cos^{2} \dfrac{x}{2} } \right) $$ [where $$\theta =x$$]
$$\Rightarrow \sin x=\tan^{2} \dfrac{x}{2}$$
Hence proved.
Note: While solving we have transformed $$\tan y$$ into $$\cot y$$, this is because as we know that our solution is in the form of $$\sin y$$ and to convert it into $$\sin y$$ we need $$\csc y$$ and so if we transform $$\tan y$$ into $$\cot y$$ then we can easily transform $$\cot y$$ into $$\csc y$$ by the formula $$\csc^{2} y=1+\cot^{2} y$$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

