
If $$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$, then prove that $$\sin y=\tan^{2} \dfrac{x}{2}$$.
Answer
597.9k+ views
Hint: In this question it is given that $$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$,
We have to prove that $$\sin y=\tan^{2} \dfrac{x}{2}$$.
So to find the solution we have to first convert the $$\cot^{-1} \theta$$ into $$\tan^{-1} \theta$$ and after that we have to use the formula,
$$\tan^{-1} \alpha -\tan^{-1} \beta =\tan^{-1} \left( \dfrac{\alpha -\beta }{1+\alpha \beta } \right) $$.........(1)
After using it by simplification we are able to find the solution.
Complete step-by-step solution:
Given,
$$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1}{\sqrt{\cos x} } \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$ [$$\because \cot^{-1} \alpha =\tan^{-1} \dfrac{1}{\alpha }$$]
Now by using the formula (1) we can write the above equation as,
$$ y=\tan^{-1} \left( \dfrac{\dfrac{1}{\sqrt{\cos x} } -\sqrt{\cos x} }{1+\dfrac{1}{\sqrt{\cos x} } \cdot \sqrt{\cos x} } \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\left( \sqrt{\cos x} \right)^{2} }{\sqrt{\cos x} } }{1+1} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\cos x}{\sqrt{\cos x} } }{2} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right)$$
$$\Rightarrow \tan y=\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) $$
Now as we know that,$$\cot \theta =\dfrac{1}{\tan \theta }$$, therefore the above equation can be written as,
$$\cot y=\dfrac{1}{\tan y}$$
$$\Rightarrow \cot y=\dfrac{1}{\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) }$$
$$\Rightarrow \cot y=\dfrac{2\sqrt{\cos x} }{1-\cos x}$$............(1)
Now as we know that, $$\csc^{2} \theta =1+\cot^{2} \theta$$
So by using the above formula we can write,
$$\csc^{2} y=1+\cot^{2} y$$
$$\Rightarrow \csc^{2} y=1+\left( \dfrac{2\sqrt{\cos x} }{1-\cos x} \right)^{2} $$ [from equation (1)]
$$\Rightarrow \csc^{2} y=1+\dfrac{\left( 2\sqrt{\cos x} \right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=1+\dfrac{2^{2}\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{\left( 1-\cos x\right)^{2} +4\cos x}{\left( 1-\cos x\right)^{2} }$$..........(2)
As we know that $$\left( a-b\right)^{2} =a^{2}-2ab+b^{2}$$
By using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$ \csc^{2} y=\dfrac{1^{2}-2\cos x+\cos^{2} x+4\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}-2\cos x+4\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}+2\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
Now again as we know that $$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$
So by using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$\csc^{2} y=\dfrac{\left( 1+\cos x\right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\left( \dfrac{1+\cos x}{1-\cos x} \right)^{2} $$
$$\Rightarrow \csc y=\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [Omitting square from the both side]
$$\Rightarrow \dfrac{1}{\sin x} =\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [$$\because \csc \theta =\dfrac{1}{\sin \theta }$$]
$$\Rightarrow \sin x=\left( \dfrac{1-\cos x}{1+\cos x} \right) $$
Now we have to use two trigonometric identities, which are,
$$1+\cos \theta =2\cos^{2} \dfrac{\theta }{2}$$ and
$$1-\cos \theta =2\sin^{2} \dfrac{\theta }{2}$$
So by using these identity we can write the above equation as,
$$ \sin x=\left( \dfrac{2\sin^{2} \dfrac{x}{2} }{2\cos^{2} \dfrac{x}{2} } \right) $$ [where $$\theta =x$$]
$$\Rightarrow \sin x=\tan^{2} \dfrac{x}{2}$$
Hence proved.
Note: While solving we have transformed $$\tan y$$ into $$\cot y$$, this is because as we know that our solution is in the form of $$\sin y$$ and to convert it into $$\sin y$$ we need $$\csc y$$ and so if we transform $$\tan y$$ into $$\cot y$$ then we can easily transform $$\cot y$$ into $$\csc y$$ by the formula $$\csc^{2} y=1+\cot^{2} y$$.
We have to prove that $$\sin y=\tan^{2} \dfrac{x}{2}$$.
So to find the solution we have to first convert the $$\cot^{-1} \theta$$ into $$\tan^{-1} \theta$$ and after that we have to use the formula,
$$\tan^{-1} \alpha -\tan^{-1} \beta =\tan^{-1} \left( \dfrac{\alpha -\beta }{1+\alpha \beta } \right) $$.........(1)
After using it by simplification we are able to find the solution.
Complete step-by-step solution:
Given,
$$y=\cot^{-1} \left( \sqrt{\cos x} \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1}{\sqrt{\cos x} } \right) -\tan^{-1} \left( \sqrt{\cos x} \right) $$ [$$\because \cot^{-1} \alpha =\tan^{-1} \dfrac{1}{\alpha }$$]
Now by using the formula (1) we can write the above equation as,
$$ y=\tan^{-1} \left( \dfrac{\dfrac{1}{\sqrt{\cos x} } -\sqrt{\cos x} }{1+\dfrac{1}{\sqrt{\cos x} } \cdot \sqrt{\cos x} } \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\left( \sqrt{\cos x} \right)^{2} }{\sqrt{\cos x} } }{1+1} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{\dfrac{1-\cos x}{\sqrt{\cos x} } }{2} \right) $$
$$\Rightarrow y=\tan^{-1} \left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right)$$
$$\Rightarrow \tan y=\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) $$
Now as we know that,$$\cot \theta =\dfrac{1}{\tan \theta }$$, therefore the above equation can be written as,
$$\cot y=\dfrac{1}{\tan y}$$
$$\Rightarrow \cot y=\dfrac{1}{\left( \dfrac{1-\cos x}{2\sqrt{\cos x} } \right) }$$
$$\Rightarrow \cot y=\dfrac{2\sqrt{\cos x} }{1-\cos x}$$............(1)
Now as we know that, $$\csc^{2} \theta =1+\cot^{2} \theta$$
So by using the above formula we can write,
$$\csc^{2} y=1+\cot^{2} y$$
$$\Rightarrow \csc^{2} y=1+\left( \dfrac{2\sqrt{\cos x} }{1-\cos x} \right)^{2} $$ [from equation (1)]
$$\Rightarrow \csc^{2} y=1+\dfrac{\left( 2\sqrt{\cos x} \right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=1+\dfrac{2^{2}\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{\left( 1-\cos x\right)^{2} +4\cos x}{\left( 1-\cos x\right)^{2} }$$..........(2)
As we know that $$\left( a-b\right)^{2} =a^{2}-2ab+b^{2}$$
By using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$ \csc^{2} y=\dfrac{1^{2}-2\cos x+\cos^{2} x+4\cos x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}-2\cos x+4\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\dfrac{1^{2}+2\cos x+\cos^{2} x}{\left( 1-\cos x\right)^{2} }$$
Now again as we know that $$a^{2}+2ab+b^{2}=\left( a+b\right)^{2} $$
So by using this identity where a=1, b=$$\cos x$$, the above equation can be written as,
$$\csc^{2} y=\dfrac{\left( 1+\cos x\right)^{2} }{\left( 1-\cos x\right)^{2} }$$
$$\Rightarrow \csc^{2} y=\left( \dfrac{1+\cos x}{1-\cos x} \right)^{2} $$
$$\Rightarrow \csc y=\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [Omitting square from the both side]
$$\Rightarrow \dfrac{1}{\sin x} =\left( \dfrac{1+\cos x}{1-\cos x} \right) $$ [$$\because \csc \theta =\dfrac{1}{\sin \theta }$$]
$$\Rightarrow \sin x=\left( \dfrac{1-\cos x}{1+\cos x} \right) $$
Now we have to use two trigonometric identities, which are,
$$1+\cos \theta =2\cos^{2} \dfrac{\theta }{2}$$ and
$$1-\cos \theta =2\sin^{2} \dfrac{\theta }{2}$$
So by using these identity we can write the above equation as,
$$ \sin x=\left( \dfrac{2\sin^{2} \dfrac{x}{2} }{2\cos^{2} \dfrac{x}{2} } \right) $$ [where $$\theta =x$$]
$$\Rightarrow \sin x=\tan^{2} \dfrac{x}{2}$$
Hence proved.
Note: While solving we have transformed $$\tan y$$ into $$\cot y$$, this is because as we know that our solution is in the form of $$\sin y$$ and to convert it into $$\sin y$$ we need $$\csc y$$ and so if we transform $$\tan y$$ into $$\cot y$$ then we can easily transform $$\cot y$$ into $$\csc y$$ by the formula $$\csc^{2} y=1+\cot^{2} y$$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

