
If $y=\text{cose}{{\text{c}}^{-1}}x,x>1$, then show that $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}=0$
Answer
576k+ views
Hint: We are given a function as: $y=\text{cose}{{\text{c}}^{-1}}x,x>1$. So, differentiation the given function with respect to x to get the value of $\dfrac{dy}{dx}$ by using the formula: $\dfrac{d}{dx}\left( \text{cose}{{\text{c}}^{-1}}x \right)=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}$.
Then, differentiate $\dfrac{dy}{dx}$ with respect to x and get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ by using quotient rule of differentiation, i.e. $\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$. Now, substitute the values of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ in the equation: $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$ and prove that the equation is equals to zero.
Complete step by step answer:
Since we have a function: $y=\text{cose}{{\text{c}}^{-1}}x......(1)$
Now, using the formula $\dfrac{d}{dx}\left( \text{cose}{{\text{c}}^{-1}}x \right)=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}$, differentiate equation (1) with respect to x, we get:
$\dfrac{dy}{dx}=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}......(2)$
So, we have the value of $\dfrac{dy}{dx}$.
Now, to get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ , differentiate equation (2) with respect to x, we get:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right)......(3)$
As we know, by quotient rule of differentiation:
$\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$
By using this formula, we can write equation (3) as:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \dfrac{d}{dx}\left( x\sqrt{{{x}^{2}}-1} \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(3)$
Since we know that:
$\dfrac{d}{dx}\left( f(x)g(x) \right)=f'(x)g(x)+f(x)g(x)$
So, we can write equation (3) as:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( \left( \dfrac{d}{dx}x \right)\sqrt{{{x}^{2}}-1}+x\left( \dfrac{d}{dx}\sqrt{{{x}^{2}}-1} \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(4)\]
As we know that:
$\left[ \dfrac{d}{dx}a=0;\dfrac{d}{dx}x=1;\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}};\dfrac{d}{dx}f(g(x))=f'(g(x))g'(x) \right]$
By applying the above differentiation rules in equation (4), we get:
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( 0\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( 1\times \sqrt{{{x}^{2}}-1}+x\left( \dfrac{1}{2\sqrt{{{x}^{2}}-1}}\times 2x \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right) \\
& =\left( \dfrac{-\left( (-1)\times \left( \sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}} \right) \right)}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right)
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right) \\
& =\dfrac{{{\left( \sqrt{{{x}^{2}}-1} \right)}^{2}}+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{x}^{2}}-1+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \\
& =\dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}......(5)
\end{align}\]
Now, we have value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$.
Substitute the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ from equation (2) and equation (5) in the equation:
$x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$, we get:
$\begin{align}
& \Rightarrow x\left( {{x}^{2}}-1 \right)\left( \dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \right)+\left( 2{{x}^{2}}-1 \right)\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}}-\dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}} \\
& \Rightarrow 0=RHS \\
\end{align}$
Hence, proved that $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}=0$
Note: Always go step-by-step to solve a complex differentiation problem because there are many rules applied in the above solution. So, you might get confused while applying the rules of differentiation. This will make a simple solution messed up. So, choose the correct rule to apply for solving a derivative and do not apply all the rules at one time. Avoid mixing up formulas and always try to solve the problem with an easier rule.
Then, differentiate $\dfrac{dy}{dx}$ with respect to x and get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ by using quotient rule of differentiation, i.e. $\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$. Now, substitute the values of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ in the equation: $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$ and prove that the equation is equals to zero.
Complete step by step answer:
Since we have a function: $y=\text{cose}{{\text{c}}^{-1}}x......(1)$
Now, using the formula $\dfrac{d}{dx}\left( \text{cose}{{\text{c}}^{-1}}x \right)=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}$, differentiate equation (1) with respect to x, we get:
$\dfrac{dy}{dx}=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}......(2)$
So, we have the value of $\dfrac{dy}{dx}$.
Now, to get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ , differentiate equation (2) with respect to x, we get:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right)......(3)$
As we know, by quotient rule of differentiation:
$\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$
By using this formula, we can write equation (3) as:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \dfrac{d}{dx}\left( x\sqrt{{{x}^{2}}-1} \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(3)$
Since we know that:
$\dfrac{d}{dx}\left( f(x)g(x) \right)=f'(x)g(x)+f(x)g(x)$
So, we can write equation (3) as:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( \left( \dfrac{d}{dx}x \right)\sqrt{{{x}^{2}}-1}+x\left( \dfrac{d}{dx}\sqrt{{{x}^{2}}-1} \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(4)\]
As we know that:
$\left[ \dfrac{d}{dx}a=0;\dfrac{d}{dx}x=1;\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}};\dfrac{d}{dx}f(g(x))=f'(g(x))g'(x) \right]$
By applying the above differentiation rules in equation (4), we get:
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( 0\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( 1\times \sqrt{{{x}^{2}}-1}+x\left( \dfrac{1}{2\sqrt{{{x}^{2}}-1}}\times 2x \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right) \\
& =\left( \dfrac{-\left( (-1)\times \left( \sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}} \right) \right)}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right)
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right) \\
& =\dfrac{{{\left( \sqrt{{{x}^{2}}-1} \right)}^{2}}+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{x}^{2}}-1+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \\
& =\dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}......(5)
\end{align}\]
Now, we have value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$.
Substitute the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ from equation (2) and equation (5) in the equation:
$x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$, we get:
$\begin{align}
& \Rightarrow x\left( {{x}^{2}}-1 \right)\left( \dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \right)+\left( 2{{x}^{2}}-1 \right)\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}}-\dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}} \\
& \Rightarrow 0=RHS \\
\end{align}$
Hence, proved that $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}=0$
Note: Always go step-by-step to solve a complex differentiation problem because there are many rules applied in the above solution. So, you might get confused while applying the rules of differentiation. This will make a simple solution messed up. So, choose the correct rule to apply for solving a derivative and do not apply all the rules at one time. Avoid mixing up formulas and always try to solve the problem with an easier rule.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Using Huygens wave theory derive Snells law of ref class 12 physics CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

