
If $y=\text{cose}{{\text{c}}^{-1}}x,x>1$, then show that $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}=0$
Answer
511.2k+ views
Hint: We are given a function as: $y=\text{cose}{{\text{c}}^{-1}}x,x>1$. So, differentiation the given function with respect to x to get the value of $\dfrac{dy}{dx}$ by using the formula: $\dfrac{d}{dx}\left( \text{cose}{{\text{c}}^{-1}}x \right)=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}$.
Then, differentiate $\dfrac{dy}{dx}$ with respect to x and get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ by using quotient rule of differentiation, i.e. $\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$. Now, substitute the values of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ in the equation: $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$ and prove that the equation is equals to zero.
Complete step by step answer:
Since we have a function: $y=\text{cose}{{\text{c}}^{-1}}x......(1)$
Now, using the formula $\dfrac{d}{dx}\left( \text{cose}{{\text{c}}^{-1}}x \right)=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}$, differentiate equation (1) with respect to x, we get:
$\dfrac{dy}{dx}=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}......(2)$
So, we have the value of $\dfrac{dy}{dx}$.
Now, to get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ , differentiate equation (2) with respect to x, we get:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right)......(3)$
As we know, by quotient rule of differentiation:
$\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$
By using this formula, we can write equation (3) as:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \dfrac{d}{dx}\left( x\sqrt{{{x}^{2}}-1} \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(3)$
Since we know that:
$\dfrac{d}{dx}\left( f(x)g(x) \right)=f'(x)g(x)+f(x)g(x)$
So, we can write equation (3) as:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( \left( \dfrac{d}{dx}x \right)\sqrt{{{x}^{2}}-1}+x\left( \dfrac{d}{dx}\sqrt{{{x}^{2}}-1} \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(4)\]
As we know that:
$\left[ \dfrac{d}{dx}a=0;\dfrac{d}{dx}x=1;\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}};\dfrac{d}{dx}f(g(x))=f'(g(x))g'(x) \right]$
By applying the above differentiation rules in equation (4), we get:
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( 0\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( 1\times \sqrt{{{x}^{2}}-1}+x\left( \dfrac{1}{2\sqrt{{{x}^{2}}-1}}\times 2x \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right) \\
& =\left( \dfrac{-\left( (-1)\times \left( \sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}} \right) \right)}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right)
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right) \\
& =\dfrac{{{\left( \sqrt{{{x}^{2}}-1} \right)}^{2}}+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{x}^{2}}-1+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \\
& =\dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}......(5)
\end{align}\]
Now, we have value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$.
Substitute the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ from equation (2) and equation (5) in the equation:
$x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$, we get:
$\begin{align}
& \Rightarrow x\left( {{x}^{2}}-1 \right)\left( \dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \right)+\left( 2{{x}^{2}}-1 \right)\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}}-\dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}} \\
& \Rightarrow 0=RHS \\
\end{align}$
Hence, proved that $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}=0$
Note: Always go step-by-step to solve a complex differentiation problem because there are many rules applied in the above solution. So, you might get confused while applying the rules of differentiation. This will make a simple solution messed up. So, choose the correct rule to apply for solving a derivative and do not apply all the rules at one time. Avoid mixing up formulas and always try to solve the problem with an easier rule.
Then, differentiate $\dfrac{dy}{dx}$ with respect to x and get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ by using quotient rule of differentiation, i.e. $\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$. Now, substitute the values of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ in the equation: $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$ and prove that the equation is equals to zero.
Complete step by step answer:
Since we have a function: $y=\text{cose}{{\text{c}}^{-1}}x......(1)$
Now, using the formula $\dfrac{d}{dx}\left( \text{cose}{{\text{c}}^{-1}}x \right)=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}$, differentiate equation (1) with respect to x, we get:
$\dfrac{dy}{dx}=\dfrac{-1}{x\sqrt{{{x}^{2}}-1}}......(2)$
So, we have the value of $\dfrac{dy}{dx}$.
Now, to get the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ , differentiate equation (2) with respect to x, we get:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right)......(3)$
As we know, by quotient rule of differentiation:
$\dfrac{d}{dx}\left( \dfrac{f(x)}{g(x)} \right)=\dfrac{f'(x)g(x)-f(x)g'(x)}{{{g}^{2}}(x)}$
By using this formula, we can write equation (3) as:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \dfrac{d}{dx}\left( x\sqrt{{{x}^{2}}-1} \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(3)$
Since we know that:
$\dfrac{d}{dx}\left( f(x)g(x) \right)=f'(x)g(x)+f(x)g(x)$
So, we can write equation (3) as:
\[\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( \dfrac{d}{dx}(-1)\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( \left( \dfrac{d}{dx}x \right)\sqrt{{{x}^{2}}-1}+x\left( \dfrac{d}{dx}\sqrt{{{x}^{2}}-1} \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right)......(4)\]
As we know that:
$\left[ \dfrac{d}{dx}a=0;\dfrac{d}{dx}x=1;\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}};\dfrac{d}{dx}f(g(x))=f'(g(x))g'(x) \right]$
By applying the above differentiation rules in equation (4), we get:
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\left( 0\times x\sqrt{{{x}^{2}}-1} \right)-\left( (-1)\times \left( 1\times \sqrt{{{x}^{2}}-1}+x\left( \dfrac{1}{2\sqrt{{{x}^{2}}-1}}\times 2x \right) \right) \right)}{{{\left( x\sqrt{{{x}^{2}}-1} \right)}^{2}}} \right) \\
& =\left( \dfrac{-\left( (-1)\times \left( \sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}} \right) \right)}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right)
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left( \dfrac{\sqrt{{{x}^{2}}-1}+\dfrac{{{x}^{2}}}{\sqrt{{{x}^{2}}-1}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)} \right) \\
& =\dfrac{{{\left( \sqrt{{{x}^{2}}-1} \right)}^{2}}+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}
\end{align}\]
\[\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{x}^{2}}-1+{{x}^{2}}}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \\
& =\dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}}......(5)
\end{align}\]
Now, we have value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$.
Substitute the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ and $\dfrac{dy}{dx}$ from equation (2) and equation (5) in the equation:
$x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}$, we get:
$\begin{align}
& \Rightarrow x\left( {{x}^{2}}-1 \right)\left( \dfrac{2{{x}^{2}}-1}{{{x}^{2}}\left( {{x}^{2}}-1 \right)\sqrt{{{x}^{2}}-1}} \right)+\left( 2{{x}^{2}}-1 \right)\left( \dfrac{-1}{x\sqrt{{{x}^{2}}-1}} \right) \\
& \Rightarrow \dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}}-\dfrac{2{{x}^{2}}-1}{x\sqrt{{{x}^{2}}-1}} \\
& \Rightarrow 0=RHS \\
\end{align}$
Hence, proved that $x\left( {{x}^{2}}-1 \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+\left( 2{{x}^{2}}-1 \right)\dfrac{dy}{dx}=0$
Note: Always go step-by-step to solve a complex differentiation problem because there are many rules applied in the above solution. So, you might get confused while applying the rules of differentiation. This will make a simple solution messed up. So, choose the correct rule to apply for solving a derivative and do not apply all the rules at one time. Avoid mixing up formulas and always try to solve the problem with an easier rule.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
