
If $y=a{{e}^{mx}}+b{{e}^{-mx}}$ , then $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y=$
1. $1$
2. $0$
3. $-1$
4. None of these.
Answer
497.1k+ views
Hint: In this problem we need to calculate the value of the given expression which is $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y$. In the given expression we can observe the term $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ which is nothing but the second order derivative of the function $y$ with respect to $x$ . So we will first calculate the first order derivative of the function $y$ with respect to $x$ by using the differentiation formulas. Now we will consider the first order derivative and differentiate it with respect to $x$. Here also we will use some differentiation formulas to get the value of second order differentiation. After having the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ , substitute the value in the given expression and simplify it to get the required result.
Complete step by step answer:
Given function $y=a{{e}^{mx}}+b{{e}^{-mx}}$ and the expression is $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y$.
Consider the value $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ which is a second order derivative of the function $y$ with respect to $x$.
So differentiating the function $y=a{{e}^{mx}}+b{{e}^{-mx}}$ with respect to $x$, then we will have
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{e}^{mx}}+b{{e}^{-mx}} \right)$
Apply the differentiation to each term individually, then we will get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{e}^{mx}} \right)+\dfrac{d}{dx}\left( b{{e}^{-mx}} \right)$
Differentiation for constants is not defined, so write them outside of the differentiation, then we will have
$\dfrac{dy}{dx}=a\dfrac{d}{dx}\left( {{e}^{mx}} \right)+b\dfrac{d}{dx}\left( {{e}^{-mx}} \right)$
Applying the differentiation formula $\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}}$ in the above equation.
$\begin{align}
& \dfrac{dy}{dx}=a\left( m{{e}^{mx}} \right)+b\left( -m{{e}^{-mx}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=ma\left( {{e}^{mx}} \right)-mb{{e}^{-mx}} \\
& \Rightarrow \dfrac{dy}{dx}=m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \\
\end{align}$
Now we have the first order derivative of the given function $y=a{{e}^{mx}}+b{{e}^{-mx}}$ as $\dfrac{dy}{dx}=m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right)$ .
Again, differentiate the first order derivative with respect to $x$ to calculate the second order derivative, then we will have
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left[ m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{d}{dx}\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{d}{dx}\left( a{{e}^{mx}} \right)-\dfrac{d}{dx}\left( b{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ a\dfrac{d}{dx}\left( {{e}^{mx}} \right)-b\dfrac{d}{dx}\left( {{e}^{-mx}} \right) \right] \\
\end{align}$
Applying the differentiation formula $\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}}$ in the above equation, then we will get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ a\left( m{{e}^{x}} \right)-b\left( -m{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ ma{{e}^{mx}}+mb{{e}^{-mx}} \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{m}^{2}}\left( a{{e}^{mx}}+b{{e}^{-mx}} \right) \\
\end{align}$
We have the value $y=a{{e}^{mx}}+b{{e}^{-mx}}$. Substituting this value in the above equation, then we will have
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{m}^{2}}y$
Subtracting the value ${{m}^{2}}y$ from both sides of the above equation, then we will get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y={{m}^{2}}y-{{m}^{2}}y \\
& \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y=0 \\
\end{align}$
So, the correct answer is “Option 2”.
Note: In this problem we have asked to calculate the value of the expression $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y$ only. In some cases they may ask to calculate the value of a second order derivative only. Then also we can follow the above mentioned procedure to calculate the second order derivative.
Complete step by step answer:
Given function $y=a{{e}^{mx}}+b{{e}^{-mx}}$ and the expression is $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y$.
Consider the value $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ which is a second order derivative of the function $y$ with respect to $x$.
So differentiating the function $y=a{{e}^{mx}}+b{{e}^{-mx}}$ with respect to $x$, then we will have
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{e}^{mx}}+b{{e}^{-mx}} \right)$
Apply the differentiation to each term individually, then we will get
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( a{{e}^{mx}} \right)+\dfrac{d}{dx}\left( b{{e}^{-mx}} \right)$
Differentiation for constants is not defined, so write them outside of the differentiation, then we will have
$\dfrac{dy}{dx}=a\dfrac{d}{dx}\left( {{e}^{mx}} \right)+b\dfrac{d}{dx}\left( {{e}^{-mx}} \right)$
Applying the differentiation formula $\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}}$ in the above equation.
$\begin{align}
& \dfrac{dy}{dx}=a\left( m{{e}^{mx}} \right)+b\left( -m{{e}^{-mx}} \right) \\
& \Rightarrow \dfrac{dy}{dx}=ma\left( {{e}^{mx}} \right)-mb{{e}^{-mx}} \\
& \Rightarrow \dfrac{dy}{dx}=m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \\
\end{align}$
Now we have the first order derivative of the given function $y=a{{e}^{mx}}+b{{e}^{-mx}}$ as $\dfrac{dy}{dx}=m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right)$ .
Again, differentiate the first order derivative with respect to $x$ to calculate the second order derivative, then we will have
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left[ m\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{d}{dx}\left( a{{e}^{mx}}-b{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{d}{dx}\left( a{{e}^{mx}} \right)-\dfrac{d}{dx}\left( b{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ a\dfrac{d}{dx}\left( {{e}^{mx}} \right)-b\dfrac{d}{dx}\left( {{e}^{-mx}} \right) \right] \\
\end{align}$
Applying the differentiation formula $\dfrac{d}{dx}\left( {{e}^{ax}} \right)=a{{e}^{ax}}$ in the above equation, then we will get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ a\left( m{{e}^{x}} \right)-b\left( -m{{e}^{-mx}} \right) \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ ma{{e}^{mx}}+mb{{e}^{-mx}} \right] \\
& \Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{m}^{2}}\left( a{{e}^{mx}}+b{{e}^{-mx}} \right) \\
\end{align}$
We have the value $y=a{{e}^{mx}}+b{{e}^{-mx}}$. Substituting this value in the above equation, then we will have
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}={{m}^{2}}y$
Subtracting the value ${{m}^{2}}y$ from both sides of the above equation, then we will get
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y={{m}^{2}}y-{{m}^{2}}y \\
& \therefore \dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y=0 \\
\end{align}$
So, the correct answer is “Option 2”.
Note: In this problem we have asked to calculate the value of the expression $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-{{m}^{2}}y$ only. In some cases they may ask to calculate the value of a second order derivative only. Then also we can follow the above mentioned procedure to calculate the second order derivative.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

